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Abstract
Monte Carlo Go is a promising method to improve the perfor-
mance of computer Go programs. This approach determines
the next move to play based on many Monte Carlo samples.
This paper examines the relative advantages of additional
samples and enhancements for Monte Carlo Go. By par-
allelizing Monte Carlo Go, we could increase sample sizes
by two orders of magnitude. Experimental results obtained
in 9 × 9 Go show strong evidence that there are trade-offs
among these advantages and performance, indicating a way
for Monte Carlo Go to go.

Introduction
Games have been extensively studied for over 50 years as
testbeds for AI. A lot of successful techniques have been
invented to improve the strength of game-playing programs.

It is widely known that incorporating efficient search al-
gorithms is one of the most important factors for strong
game-playing programs. Although there are some patholog-
ical cases (Nau 1980), Thompson (1982) showed that there
is a strong correlation between the depth of the search trees
explored by the programs and their playing strength. When
comparing a program performing (d + 1)-ply search against
one doing d-ply search, many experiments in many games
show that deeper search usually achieves improvements to
the strength (e.g., (Billings & Björnsson 2003; Heinz 2001;
Junghanns et al. 1997)). However, these experiments also
confirm that diminishing returns for additional search even-
tually appears. The larger d becomes, the smaller difference
in strength between (d + 1) and d-ply search is observed.
This phenomenon suggests that other approaches must be
investigated, when the time for additional search to achieve
only small improvement comes.

Computer Go is a very challenging topic for game pro-
grammers. Because of a large branching factor and difficul-
ties in position evaluation, Go remains resistant to current
AI techniques, including a search-based approach. So far,
despite a lot of effort, a player of medium skill can easily
win against state-of-the-art computer Go programs (Müller
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2002). Researchers therefore have been investigating new
ideas to improve computer Go programs.

One of the most interesting and exciting ideas is a
sampling-based approach, which is called Monte Carlo Go
(Bouzy & Helmstetter 2003; Brügmann 1993). Monte Carlo
Go collects a lot of samples to approximate the expected
outcome for each move. It then selects the move that has the
highest expected outcome. Each sample consists of a ran-
dom game in which each player almost randomly selects a
legal move until the final score of that random game is deter-
mined. Bouzy showed that Monte Carlo Go is very promis-
ing. In 9 × 9 Go, although his Monte Carlo Go program
OLGA contains little Go-dependent knowledge, it performs
better than his previous program INDIGO, which contains a
search-based approach with a lot of hand-coded Go depen-
dent knowledge (Bouzy 2003). Furthermore, Crazy Stone
(Coulom 2005), which combined Monte Carlo Go with tree
search, won the 10th KGS computer Go tournament in 2006.

This paper answers the question: which way should
Monte Carlo Go go? Monte Carlo Go can clearly reduce
statistical errors by collecting more samples. However, it is
not yet known how much improvement can practically be
achieved with additional samples. The contributions of this
paper can be summarized as follows:

1. Examining the relationship between the sampling effort
of Monte Carlo Go and playing strength in 9× 9 Go. The
existence of diminishing returns for additional samples is
vividly observed through self-play experiments.

2. Demonstrating experimentally a relationship between
samples and enhancements. Starting from the basic algo-
rithm, two enhancements, atari-50 and progressive prun-
ing are incorporated. Improvements to the strength with
these enhancements are discussed. In all versions, dimin-
ishing returns for additional samples is confirmed. More-
over, the gains of additional samples decline more quickly
in the enhanced versions.

3. Analyzing move decisions in Monte Carlo Go with re-
spect to the number of samples. The analysis suggests
that Monte Carlo Go needs more samples to improve the
quality of moves in the middle game.

4. Parallelizing Monte Carlo Go. This allows many more
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Figure 1: Example of a terminal position in Go

samples than in previous experiments (2,560,000 samples
with 128 processors versus 10,000 samples for a practical
compromise in (Bouzy & Helmstetter 2003)).
The structure of the paper is as follows: First, the rules

of Go are briefly explained and related work is reviewed.
Then, the implemented sequential and parallel Monte Carlo
Go algorithm is presented, followed by experimental results.
Finally, conclusions and future work are discussed.

The Game of Go
Go is popularly played especially in Asia. The rules are very
simple. Black or White places a stone on an intersection
point of a grid by turns. A pass is also legal. Although a
board containing 19 × 19 points is usually used, 9 × 9 Go
is also popular especially among beginners. In particular, a
lot of researchers work on 9×9 Go because it still preserves
many of the difficulties of this game.

A block is a directly connected set of stones of the same
color. The empty points adjacent to a block are called liber-
ties. A block is captured if the opponent plays on the last lib-
erty of that block. A block is called in atari if it has only one
liberty. In most variations of Go, except for moves capturing
opponent blocks, a player is not allowed to make a move that
results in any block of that player having no liberties. A sin-
gle empty point surrounded by stones of the same block is
called an eye. If blocks have two eyes, they are guaranteed
to be alive. A territory is a surrounded area controlled by
one player. Alive opponent stones cannot be contained in a
territory. The game ends when the territories of each player
are decided. To determine the winner, each player counts
and compares the points in his or her territories.1 For exam-
ple, in Figure 1, points marked with grey squares are White’s
points and ones marked by white squares are Black’s. In this
figure, White wins because White has 41 points and Black
has 40 points.

Related Work
This section reviews the literature on Monte Carlo Go and
diminishing returns.

Monte Carlo Go
History Sampling-based approaches have been widely
adapted to imperfect-information games (such as Bridge

1This paper assumes the Chinese rule with no komi (handicaps).

(Ginsberg 1999), Scrabble (Sheppard 2002), and Poker
(Billings et al. 2002)). In perfect-information games,
Abramson (1990) presented a method to use random sam-
pling for evaluation. Applying the Monte Carlo method to
Go was first introduced by Brügmann (1993), and was re-
investigated by Bouzy & Helmstetter (2003). Then, many
enhancements have been presented including combination
with tactical searches (Cazenave & Helmstetter 2005) or
with Go knowledge such as patterns and move generators of
existing Go programs (Bouzy 2005). Also, Bouzy combined
Monte Carlo Go with d-ply search and a pruning method
based on statistics of sampling at leaf nodes (2004). These
efforts improve the strength of Monte Carlo Go programs
reaching that of GNU Go, one of the best programs.
Basic Model and Enhancements Monte Carlo Go per-
forms random sampling for position evaluation, instead of
hand-coded evaluation functions. The basic model which
we call the one-ply-model performs one-ply search and com-
putes an “expected score” of each leaf. Then, it selects the
move having the highest score. The expected score of a po-
sition is defined as the average of the final scores in the ter-
minal positions of all random games starting from that po-
sition.2 A fixed number of random games is played at each
leaf. In a random game, each player almost randomly plays
a legal move except for one filling in an eye point of that
player3 until the final score of the game is determined.

The all moves as first heuristic (AMAFH) is another
model of utilizing random games. AMAFH selects the move
having the largest difference between the first-put-scores for
the player and that for the opponent. A first-put-score of a
move for a player is defined as the average of final scores in
the terminal positions of such random games that the player
played the move before the opponent. AMAFH starts ran-
dom games from the root, while the one-ply-model plays
random games at leaves from depth 1. This property can
reduce the number of samples (Bouzy & Helmstetter 2003).

Progressive Pruning is a pruning technique (Bouzy &
Helmstetter 2003) in the one-ply-model. The idea is based
on the fact that the average score of a larger number of ran-
dom games can be statistically estimated by using the aver-
age score of a smaller number of random games. Let mi be
a mean value of move i, and σi be its standard deviation.
Then, the mean value after a sufficient number of random
games m′

i is expected to lie in the range [mi − σird,mi +
σird], where rd is a confidence ratio. mi is statistically infe-
rior to mj if and only if mi + σird < mj − σjrd holds. Af-
ter a sufficient number of random games, progressive prun-
ing prunes a move as soon as it is statistically inferior to
another move. Also, the sampling phase ends when all can-
didate moves become statistically equal, defined as follows:
let σe be the standard deviation for equality, defined by ex-
periments. Moves are statistically equal if and only if the
standard deviation of each move is smaller than σe and no
move is statistically inferior to other moves. As a result, pro-

2Because of correct evaluation of terminal positions, a large
number of samples can make the error rate of Monte Carlo Go
evaluation close to 0, when it finds a winning/losing way.

3Filling one’s eye is an extremely bad move in Go.



gressive pruning can reduce the number of samples required
to select the best move.

Diminishing Returns in Search Algorithms
While diminishing returns for additional search is confirmed
in many games (Billings & Björnsson 2003; Junghanns et
al. 1997), demonstrating diminishing returns in chess took
time. In self-play chess games, (Thompson 1982) showed
that a program with (d + 1)-ply search wins against the
version performing d-ply search by a large margin. Sur-
prisingly, no diminishing return was observed for additional
search. Many follow-up experiments indicated that deeper
search constantly improves the strength of chess programs
(Berliner et al. 1990; Mysliwietz 1994). Although (Jung-
hanns et al. 1997) did not also observe diminishing returns,
they gave some evidence supporting the existence of di-
minishing returns. (Heinz 2001) finally demonstrated that
diminishing returns appear with many games and deeper
search performed by one of the strongest programs.

Diminishing Returns in Monte Carlo Go
On top of AMAFH, (Bouzy & Helmstetter 2003) compared
Monte Carlo Go with 10,000 random games against ver-
sions with 1,000 and 100,000 random games. The differ-
ence in strength between 100 K and 10 K random games
was smaller than that between 1 K and 10 K random games,
while the difference in execution time between 100 K and 10
K random games was larger than that between 10 K and 1
K random games. He therefore concluded that 10 K random
games is a good compromise in practice.

Statistically, the central limit theorem gives an insight to
Monte Carlo Go. Assume that N random games are inde-
pendent and let m be a mean of the random games and σ
be the standard deviation. If N is large enough, the distri-
bution of these random games approaches a normal distri-
bution with mean m and standard deviation σ√

N
. This indi-

cates that more samples achieve less errors but the benefits
of additional samples decrease. From a practical point of
view, although Bouzy’s experiments imply the existence of
diminishing returns in Monte Carlo Go, there is no evidence
that supports it. Moreover, no relationship between samples
and enhancements has so far been investigated.

Implementation Designs for Monte Carlo Go
This section discusses sequential and parallel algorithms of
our Monte Carlo Go implementation.

Sequential Algorithm
The techniques incorporated into our Monte Carlo Go pro-
gram are summarized as follows:
Computation of Average Scores When implementing
Monte Carlo Go, either the one-ply-model or AMAFH is so
far available. However, because of drawbacks of AMAFH
and intensive computation of the one-ply-model (Bouzy &
Helmstetter 2003), a simpler approach is incorporated into
our implementation: let s be the final score of a random
game and move i be the first move in that random game.

s is used to compute i’s average score. This simplification
can behave similarly to the one-ply-model, especially when
a large number of random games are played for move de-
cisions. Furthermore, it caused no degradation in strength
against AMAFH.
Enhancements To investigate a relationship between en-
hancements and the number of random games, the following
techniques are added:
• Atari-50 Enhancement: In a random game, each player

plays a random move except for one that fills an eye point
(Bouzy & Helmstetter 2003). This move selection scheme
implies that adding Go-dependent knowledge is important
in Monte Carlo Go. Since a move capturing stones is gen-
erally good in Go, the atari-50 enhancement increases the
probability of such capture to 50%, instead of assigning a
uniform probability to each move. Let N1 be the number
of capture moves, and N2 be the number of other legal
moves. Note that N1 is almost always much smaller than
N2, because the number of capture moves is smaller than
that of regular moves. If move i can capture stones, its
probability is set to 50

N1

%. Otherwise, it is set to 50

N2

%.

• Progressive Pruning: A small modification is incorpo-
rated into our implementation, because our implemen-
tation does not perform one-ply search as in (Bouzy &
Helmstetter 2003). Let move i be the first move of a ran-
dom game. The final score of that random game is used
to check if progressive pruning is applied to move i. This
introduces differences in the number of samples among
moves to apply progressive pruning. However, such er-
rors become small with a large number of samples as in
the previous subsection. Moreover, with the fixed number
of samples at the root, our program can sample more fre-
quently for unpruned moves, thus achieving more precise
scores for such promising moves. In our implementation,
at least 6,400 samples are required to turn on progressive
pruning with σe = 1.0 and rd = 0.3, tuned by many ex-
periments.

Parallel Algorithm
Parallelizing Monte Carlo Go is a way to experiment with
much larger sample sizes. Monte Carlo Go with no en-
hancement or the atari-50 enhancement can easily be par-
allelized, because no dependencies exist among random
games. Let p be the number of processors and N × p be
the number of samples. In our parallel implementation with
no enhancement/atari-50, each processor locally collects N
samples. Then, scores from all processors are combined to
compute the expected score of each move.

Parallelizing Monte Carlo Go with progressive pruning
must consider that some branches at the root are sometimes
pruned. Our parallel algorithm consists of the master proces-
sor and a series of slave processors. As shown in Figure 2,
the master gathers results from the slaves to check if progres-
sive pruning can be applied. Each slave receives the pruning
information from the master and plays random games.

Let p be the number of slave processors and N × p × s
be the total number of random games. The master splits the



/* Manage the average score µ and standard deviation σ. */
struct Stats { double µ, σ; };
Master() {

/* µ and σ of each move is managed in stats. */
struct Stats stats[NUM LEGAL MOVES];
/* A set of flags checking if a move is pruned. */
bool pruned[NUM LEGAL MOVES];
/* No move is pruned in the beginning. */
SetAllFlagsToFalse(pruned);
for (i=0; i < s; i++) {

BroadcastMsg(pruned, ALL SLAVES);
struct Stats temp[NUM LEGAL MOVES];
/* Wait until all slaves end a stage of random games. */
RecvAllSlavesResults(temp, ALL SLAVES);
UpdateµAndσ(stats,temp);
/* Select the best move with the largest µ. */
best move = GetMaxµMove(stats);
ml = stats[best move].µ - rd× stats[best move].σ;
foreach (move k) {

mr = stats[k].µ + rd× stats[k].σ;

/* Perform progressive pruning. */
if( mr < ml) pruned[k] = true;

} } }
Slave() {

/* Receive a set of flags to prune moves; */
bool pruned[NUM LEGAL MOVES];
struct Stats stats[NUM LEGAL MOVES];
RecvMsg(pruned,MASTER);
for (j=0; j < N ; j++) {

/* Randomly select the first move that is not pruned
by progressive pruning. */

move = SelectUnprunedMove(pruned);
MakeMove(move);
score = PerformRandomGames();
UnmakeMove(move);
stat[move] = CalcµAndσ(stat, move, score);

}
/* Send statistics to the master. */
SendMsg(stat, MASTER);

}

Figure 2: Pseudo code of parallel progressive pruning

work into s stages. In each stage, the master asks each slave
to play N random games. The master then tallies up results
from all slaves to decide the moves to prune4.

Although the algorithm waits for the last slave to finish N
random games, it achieves very good load balancing. The
execution time for each slave playing N random games is
almost the same. The algorithm also has a trade-off between
the number of stages and efficiency of progressive pruning.
Large s incurs more communication overhead but can prune
branches more frequently. On the other hand, although small
s achieves less communication overhead, pruning occurs
less frequently, causing slaves to play unnecessary random
games. In this paper, N × p is always set to 6,400 so that
the progressive pruning of the parallel algorithm is the same
irrespective of the number of processors, and incurs small
communication overhead.

Experimental Results
Programs and Environment
To measure the relative effectiveness of increasing samples,
various experiments are conducted with three versions of
Monte Carlo Go programs:
• BASIC: No enhancement is added,
• ATARI: The atari-50 enhancement is added to BASIC,
• ATARIPP: Progressive pruning is added to ATARI.
They were implemented with C++ and the MPI library
(Gropp et al. 1996) for parallelism. The linear congruen-
tial method was incorporated into the implementation as a

4The master can obviously be a slave while the slaves play ran-
dom games. However, our current implementation does not include
this, because of the simplicity of the implementation and the large
number of processors in our environment.
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Figure 3: Self-play results with various sample sizes

random number generator for efficiency, because no signif-
icant difference was seen in the strength of programs with
Mersenne Twister in our preliminary experiments.

Experiments were measured in an environment that con-
tains 192 PCs with an Intel Xeon Dual CPU at 2.40 GHz
with 2 GB memory, connected by 1 Gb/s network. At most
64 PCs (i.e., 128 processors) were used for the experiments.

GNU Go5 was used with the aftermath option to judge
the winner of the two programs in each game.

Self-Play Results with Various Sample Sizes
First, self-play games with various numbers of samples were
performed to show a relationship of diminishing returns be-
tween strength and sample sizes. Each program with N
random games played a 200-game match against one with
N × 4 random games. Figure 3 shows the winning percent-
age, where N is plotted on the horizontal axis against the
winning percentages for a program with N × 4 samples on

5http://www.gnu.org/software/gnugo/gnugo.html
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the vertical axis. For example, 40K-10K on the horizon-
tal axis indicates the match between a program with 40,000
and 10,000 random games. The result clearly shows that
the benefits of additional samples decline as the sample size
increases. Further, although the difference of diminishing
returns between ATARI and ATARIPP is small, adding en-
hancements tends to make diminishing returns appear more
quickly, reaching around the 55% winning percentage.

Performance when Adding Enhancements
Next, self-play games with the same sample sizes but with
different enhancements were performed to show the rela-
tionship between the number of samples and the effective-
ness of enhancements. Figure 4 shows results on the strength
with additional enhancements and various sample sizes. The
number of samples is plotted on the horizontal axis against
the winning percentage of the version having more enhance-
ments on the vertical axis.

Even if the sample size increases, ATARI consistently
wins against BASIC, without decreasing the winning per-
centage. ATARIPP performs better than ATARI with
large sample sizes. With the smaller number of samples,
ATARIPP does not tend to exploit promising branches that
cannot be found by ATARI, while ATARIPP occasionally
prunes promising branches with some risk.

Decision Quality of Each Move
The moves selected by programs with various samples sizes
were analyzed to estimate the relationship between the de-
cision quality and the number of samples. 58 game records

played by Japanese professionals were prepared6. At var-
ious points (moves 10 through 50) of each game, the ex-
pected scores of all legal moves were computed by using 64
million random games to create an oracle.

Figure 5 shows the number of legal moves and the quality
of the random player against the BASIC oracle. The move
number is plotted on the horizontal axis against the num-
ber of legal moves and the quality of the random player on
the vertical axis. As the game progresses, the number of
legal moves gradually decreases. Starting from 82 moves
including a pass, it ends with around 30 moves. The qual-
ity of the random player is defined as the average of dif-
ferences between the scores of oracle’s best moves and the
scores of the moves randomly chosen. Note that these scores
are computed by oracle. The quality of the move chosen
by the random player almost linearly decreases, where it is
about -2 points in the opening and is about -5 points near the
endgame. Results suggest that Monte Carlo Go (i.e., oracle
in this case) tends to discover a larger difference between the
best move and other moves as the game progresses.

Figure 6 shows the quality of Monte Carlo programs with
various samples sizes. The left figure (a) is for BASIC and
the right one (b) is for ATARI. As in the previous figure, the
move number is plotted on the horizontal axis against the
quality of the selected move on the vertical axis. The oracle
is defined as the version with the same enhancements and
64 million samples. In this figure, the quality approaches
that of the oracle as the number of samples increases. Also,
the quality difference decreases with enhancements. Again,
these results confirm that the benefits of additional samples
decline as the sample size increases and that additional en-
hancements make diminishing returns appear more quickly.

Results in Figure 6 also suggest a way of time control for
Monte Carlo Go. The number of samples is usually fixed
as proportional to the number of legal moves in a position
(Bouzy & Helmstetter 2003), collecting less samples as the
game progresses. However, the number of samples can be
varied based on the stage of a game. For example, our results
suggest that more samples must be collected in the middle
games (moves 10 through 30).

Concluding Remarks
Bouzy & Helmstetter (2003) mentioned, “We believe that,
with the help of increasing power of computation, this ap-
proach is promising for computer Go in the future.” How-
ever, our experimental results demonstrate diminishing re-
turns with additional samples, a problem that similarly af-
fects the benefits of game-tree search for additional depth.
Our results indicate strong evidence that advances in hard-
ware technologies cannot constantly improve the perfor-
mance of Monte Carlo Go, even if additional computational
power enables them to sample more random games. A ques-
tion on the best way to improve the strength of Monte Carlo
Go is raised in this paper. One way is to concentrate more ef-
fort on enhancements such as atari-50 and progressive prun-
ing.

6They are available at http://gobase.org/9x9/book4.
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Figure 6: Analysis of each move

Bouzy’s recent research (2004) that combines Monte
Carlo Go with minimax search and progressive pruning can
be regarded as one way to avoid diminishing returns for ad-
ditional samples. This approach raises a question on rela-
tions between sample sizes and search. Additionally, the
expected scores of Monte Carlo Go basically have different
characteristics from minimax values of game-tree search. So
far, it is believed that search is excellent for tactics, while
Monte Carlo is promising for evaluating strategic positions.
Examining the (dis)advantages of both approaches will be
a possible extension of this paper. Finally, because Monte
Carlo sampling is a domain-dependent idea, extending this
research to other domains will be an interesting topic.
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