
Write it Recursively:
A Generic Framework for Optimal Path Queries

Akimasa Morihata Kiminori Matsuzaki Masato Takeichi
Graduate School of Information Science and Technology, University of Tokyo, Japan

{morihata,kmatsu}@ipl.t.u-tokyo.ac.jp, takeichi@mist.i.u-tokyo.ac.jp

Abstract
Optimal path queries are queries to obtain an optimal path specified
by a given criterion of optimality. There have been many studies
to give efficient algorithms for classes of optimal path problem.
In this paper, we propose a generic framework for optimal path
queries. We offer a domain-specific language to describe optimal
path queries, together with an algorithm to find an optimal path
specified in our language. One of the most distinct features of our
framework is the use of recursive functions to specify queries.
Recursive functions reinforce expressiveness of our language so
that we can describe many problems including known ones; thus,
we need not learn existing results. Moreover, we can derive an
efficient querying algorithm from the description of a query written
in recursive functions. Our algorithm is a generalization of existing
algorithms, and answers a query in O(n log n) time on a graph of
O(n) size. We also explain our implementation of an optimal path
querying system, and report some experimental results.

Categories and Subject Descriptors I.2.2 [Automatic Program-
ming]: Program transformation; I.2.8 [Problem Solving, Control
Methods, and Search]: Dynamic programming; D.3.2 [Language
Classifications]: Specialized application languages

General Terms Algorithms, Languages

Keywords Optimal path query, Recursive function, Finite state
automaton, Program transformation

1. Optimal Path Query
Imagine we are planning a trip to a historic city, in which we
intend to look round famous sights. How can we find the best
route for strolling the city? We may be able to find the shortest
route, because well-known algorithms for shortest path problems
will be applicable. However, what we truly want may not be the
shortest route in practice: we might want to find a route whose
transportation expense is less than some limit; we might want to
take a rest in some cafeteria on afternoon; we might want to walk
for a while to enjoy the scenery; we might not want to walk after
visiting some temple on a hill, etc. After all, it is a complicated
problem — how can we find the best route?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’08, September 22–24, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-59593-919-7/08/09. . . $5.00

Our objective is to give a generic framework for optimal path
queries: we intend to find the optimal route, which is identified
by a given criterion of optimality. Optimal path queries are im-
portant from both theoretical and practical aspects. In theory, a
lot of optimization problems result in routing problems, such as
shortest path problems and their variants. In practice, optimal path
queries have many real applications. The trip-planning problem de-
scribed above is a direct application. To give a routing with quality-
of-service guarantees is another application (Korkmaz and Krunz
2001), where optimal path queries are necessary to find a routing
that satisfies additional requirements such as band width and la-
tency. Querying graph-structured databases is also an application of
optimal path queries. Regular path queries (Mendelzon and Wood
1995; Flesca et al. 2006) are known to be an expressive and effi-
cient framework; however, infinite number of paths may match a
query, and it is important to extract the optimal one.

Since optimal path queries are important, there are a lot of
studies on this topic from algorithmic viewpoints (Joksch 1966;
Desrochers and Soumis 1988; Romeuf 1988; Punnen 1991; Barrett
et al. 2000; Brodal and Jacob 2004; Villeneuve and Desaulniers
2005; Sherali et al. 2006; Chan and Zhang 2007). However, it
is difficult for non-specialists to utilize such studies for their ob-
jective. Recall the trip-planning problem. Even finding the short-
est route via given sights is a nontrivial problem, and in fact, it
is an instance of regular-language-constrained shortest path prob-
lems (Romeuf 1988). The first additional requirement, the expense
must be less than a limit, is an instance of weight-constrained short-
est path problems (Joksch 1966). The second one, take a rest at
the cafeteria on afternoon, is a combination of time-window con-
straints (Desrochers and Soumis 1988) and regular-language con-
straints. It is not easy to find an existing algorithm that copes with
a requirement; furthermore, we need to deal with combinations of
many requirements.

In this paper, we propose a generic framework for optimal
path queries. We propose a domain-specific language to describe
optimal path queries, together with an algorithm to find an optimal
path specified in our language. Since we can naturally express
combinations of requirements in our language, we are not in trouble
to deal with them.

One of the most distinct features of our framework is the use
of recursive functions to specify queries. Recursive functions rein-
force expressiveness of our language so that we can describe many
problems including known ones; thus, we need not learn existing
results. Moreover, we can derive an efficient querying algorithm
from the description of a query written in recursive functions.

Our contributions are summarized as follows.

A domain-specific language for optimal path queries We design
a domain-specific language to describe optimal path queries. In our
language, each query is specified by recursive functions on a path.

prog ::= minimize h(x) subject to p(x) where decl · · · decl { Program }
decl ::= p(ε) = b; p(x · a) = φ; { Boolean-valued function }

| f(ε) = n; f(x · a) = e; { Integer-valued function }
| h(ε) = n; h(x · a) = e′; { Objective function }

φ ::= b | ¬φ | φ ∧ φ | φ ∨ φ | p(x) | q(a) | e ≤ n { Boolean-valued expression }
e ::= n | e⊕ e | f(x) | h(x) | w(a) | if φ then e else e { Integer-valued expression }
e′ ::= n | e′ ⊕ e′ | h(x) | w(a) | if φ then e′ else e′ { Expression for the objective function }
⊕ ::= + | × | ↑ | ↓ { Binary operator }

Figure 1. Syntax of our query language, where b ∈ {True,False} and n ∈ Z+ are constant values, ↑ and ↓ respectively
denote infix binary maximum and minimum operators, q :E → {True,False} is an atomic predicate, w :E → Z+ is a weight
function, and a and x are respectively variables of type E and E∗.

By virtue of recursive functions, our language is so expressive that
it can describe many known problems and their combinations.

A generic and efficient optimal path querying algorithm We de-
rive a generic optimal path querying algorithm from the criterion
of optimality described in our language. Our derivation is based on
two ideas, product construction and by-need evaluation, and recur-
sive functions play important roles. In addition, we propose two im-
provements to remove overheads of the algorithm. Our algorithm is
a generalization of some existing algorithms, and finds an optimal
path in O(n log n) time on a graph of O(n) size.

A neat optimal path querying system We show an implementa-
tion of an optimal path querying system. In our system, querying
consists of two stages. The first stage is code generation, where
the system analyses the query description and generates codes that
consist of information for efficient querying. The second is graph
searching, where the system performs optimal path querying us-
ing the generated codes. While our implementation is lightweight
and consists of only several hundred lines of codes, it can answer
queries on graphs of practical size.

The rest of this paper is organized as follows. In Section 2,
we prepare basic notations. In Section 3, we describe our query
language. In Section 4, we show a derivation of an optimal path
querying algorithm. In Section 5, we report our implementation and
experiments. We discuss related works in Section 6, and conclude
this paper in Section 7. Proofs of lemmas are shown in Appendix A.

2. Preliminary
Given a set A, A∗ denotes a set of all sequences whose elements
are elements of A. For a sequence x = [a0, a1, . . . , an] ∈ A∗ and
an element a ∈ A, x · a denotes the extension of x by a, namely
x · a def

= [a0, a1, . . . , an, a]. The empty sequence is denoted by ε,
and ε ·a stands for a singleton sequence [a]. A concatenation of two
sequences is denoted by ++.

A graph G = (V, E) consists of a set of vertexes V and a set of
edges E. Functions hd :E → V and tl :E → V respectively return
the startpoint and endpoint of an edge. Each edge has weights given
by weight functions. Note that there may be more than one weight
functions. A sequence of edges [a0, a1, . . . , an] ∈ E∗ is said to
be a path if tl(ak) = hd(ak+1) holds for all 0 ≤ k < n. A
function dst returns the destination of a path, that is, dst(ε)

def
= •

and dst(x · a)
def
= tl(a), where • is a distinguishable value.

We will make use of deterministic finite state automata (DFA).
A DFA A = (Q, Σ, δ, q0, QF) consists of a finite set of states Q,
a finite alphabet Σ, a transition function δ : Q× Σ → Q, an initial
state q0 ∈ Q, and a set of final states QF ⊆ Q. For a DFA A and a
state q′ ∈ Q, LA denotes the language accepted by A, and A(q′)
denotes the DFA (Q, Σ, δ, q′, QF).

3. A Language for Optimal Path Queries
3.1 Rules for Query Descriptions
Figure 1 shows the syntax of our query language. At the top of a
program, we specify the objective function and the requirement for
feasible paths. Both objective functions and requirements are ex-
pressed by using recursive functions on a path. There are two kinds
of recursive functions: boolean-valued and non-negative-integer-
valued functions. Declarations of boolean-valued functions consist
of constants, basic boolean operations, function calls, atomic predi-
cates, and inequalities. Right-hand-side expressions of inequalities
must be constant non-negative integers. Declarations of integer-
valued functions consist of constants, additions, multiplications,
minimum and maximum operations, function calls, weights of
edges, and conditional expressions. The objective function is an
integer-valued function that must not call other functions outside
operands of inequalities. Atomic predicates and weights are prede-
fined, and distinguished from recursive functions by types of their
arguments: edges or paths.

The semantics the following. Given an objective function h, a
requirement p, and a graph G, the program results in one of the
minimum-h-valued paths in G among those satisfying p.

In the declaration of each recursive function, we assume that
the size of recursive parameters must decrease, such as f(x · a) =
· · · g(x) · · ·h(x) · · · ; hence all recursive functions trivially termi-
nate. Declarations like f(x·a) = · · · g(x·a) · · · are prohibited, and
we need to unfold g(x · a). Meanwhile, we use such declarations
as a syntactic sugar. Declarations like f(x · a · b) = · · · g(x) · · ·
are also prohibited, and we need to use an auxiliary function:
f(x′ · b) = · · · f ′(x′) · · · ; · · · ; f ′(x · a) = · · · g(x) · · · . In ad-
dition, we impose the following assumption, which is required to
utilize Dijkstra algorithm.

ASSUMPTION 3.1. For an objective function h and any path x · a,
h(x) ≤ h(x · a) holds. 2

It is not difficult to confirm Assumption 3.1 from descriptions of
objective functions in a sound manner. Given the objective func-
tion h, the following function check takes the declaration of its
recursive case and returns True only if it satisfies Assumption 3.1.

check [[h(x · a) = e′;]]
def
= chkh[[e′]]

chkh[[n]]
def
= False

chkh[[e′1 + e′2]]
def
= chkh[[e′1]] ∨ chkh[[e′2]]

chkh[[e′1 × e′2]]
def
= chkh[[e′1]] ∧ chkh[[e′2]]

chkh[[e′1 ↑ e′2]]
def
= chkh[[e′1]] ∨ chkh[[e′2]]

chkh[[e′1 ↓ e′2]]
def
= chkh[[e′1]] ∧ chkh[[e′2]]

chkh[[h(x)]]
def
= True

chkh[[w(a)]]
def
= False

chkh[[if φ then e′1 else e′2]]
def
= chkh[[e′1]] ∧ chkh[[e′2]]

Recall that all weights and constant integers are non-negative;
therefore, for the case of addition, it is sufficient to check that an
operand contains at least one recursive call. This condition is not
sufficient for the case of multiplication because of the possibility
of a multiplication with 0. Therefore, we check that both operands
contain a recursive call, because y ≥ x∧ z ≥ x implies y× z ≥ x
for any x ∈ Z+. The other cases are trivial.

3.2 Running Examples
Shortest Path Problems with Transit Costs
Let us consider a shortest path problem with transit costs, in which
we need to pay an additional cost to ride on a train, such as waiting
time. The following is a description of the problem in our language,
where the starting point is s, the destination is t, the additional cost
is C.

minimize cost(x) subject to p(x) where
p(ε) = False;
p(x · a) = starts(x · a) ∧ tot(a);
starts(ε) = False;
starts(x · a) = starts(x) ∨ (empty(x) ∧ froms(a));
empty(ε) = True;
empty(x · a) = False;
walk(ε) = True;
walk(x · a) = ¬train(a);
cost(ε) = 0;
cost(x · a) = cost(x) + w(a)

+ (if walk(x) ∧ train(a) then C else 0)

In the description, w is a weight function. The functions froms,
tot, and train are atomic predicates. The definitions of froms and
tot are froms(e)

def
= (hd(e) = s) and tot(e)

def
= (tl(e) = t),

respectively. The predicate train checks whether we are riding on
a train.

Use of our language is not restricted to point-to-point optimal
path problems, and we need to examine two endpoints of paths
explicitly. The recursive function starts checks whether a path
starts from s by using an auxiliary function empty .

The objective function cost , which is the characteristic part of
this problem, uses a recursive function walk to check the necessity
of transit costs. The function walk checks whether we have not
been riding on a train.

Length-Constrained Shortest Path Problems
Next is a length-constrained shortest path problem, in which the
objective is to find the shortest path that consists of fewer edges
than a given limit. The following is a description of a length-
constrained shortest path problem, where the starting point is s,
the destination is t, and the limit is K.

minimize wsum(x) subject to p(x) where
p(ε) = False;
p(x · a) = starts(x · a) ∧ tot(a) ∧ (len(x · a) ≤ K);
starts(ε) = False;
starts(x · a) = starts(x) ∨ (empty(x) ∧ froms(a));
empty(ε) = True;
empty(x · a) = False;
wsum(ε) = 0;
wsum(x · a) = wsum(x) + w(a);
len(ε) = 0;
len(x · a) = len(x) + 1;

The recursive functions starts and empty are the same as the
previous example. The integer-valued function len computes the
number of edges used. The objective function wsum computes the
summation of weights of edges.

3.3 Expressiveness
While our language is simple, it can express a large number of
known problems. Here we enumerate some of them. It is worth
noting that their combinations can be expressed in our language.
We assume only non-negative integers are used in descriptions.
For a large number of problems, negative weights of edges can
be removed in safe by re-weighting method proposed by Johnson
(1977).

FACT 3.2. The following problems can be expressed in our lan-
guage: point-to-point shortest path problems; weight-constrained
shortest path problems (Joksch 1966) (find the minimum-cost
path whose weight is less than a given limit); shortest path prob-
lems with time windows (Desrochers and Soumis 1988) (find
the shortest path where each vertex can be used only during its
time window); regular-language-constrained shortest path prob-
lems (Romeuf 1988) (find the shortest path whose label is in
a given regular language); time-table queries (Brodal and Jacob
2004) (regular-language-constrained shortest path problems where
weights of edges depend on time); shortest path problems with
forbidden paths (Villeneuve and Desaulniers 2005) (find the short-
est path that does not contain given forbidden paths); approach-
dependent, time-dependent, label-constrained shortest path prob-
lems (Sherali et al. 2006) (time-table queries where weights of
edges depend on their preceding vertexes). 2

Since recursive functions are available, it is not difficult to
describe these problems in our language. For example, regular-
language-constrained shortest path problems can be expressed in
our language based on the binary encoding technique: arrange a set
of boolean-valued functions to simulate the transition function of
the DFA corresponding to the given regular language.

While our language is expressive, there are several problems
that cannot be dealt with. For example, we cannot describe maxi-
mization problems such as maximum capacity path problems (Pun-
nen 1991). Context-free-language-constrained shortest path prob-
lems (Barrett et al. 2000) (find the shortest path whose label is in
a given context-free language) are also out of the range, because
recursive functions must traverse over a path in the fixed direction
in our language.

4. Deriving an Optimal Path Querying Algorithm
In this section, we show an optimal path querying algorithm with
two improvements. We outline our method in Section 4.1, and give
detailed explanations in Sections 4.2 and 4.3: we reduce optimal
path problems into shortest path problems in Section 4.2, and intro-
duce our optimal path querying algorithm in Section 4.3. In addi-
tion to the algorithm, we propose two improvements in Section 4.4.
We compare our algorithm with others in Section 4.5, and show
some examples in Section 4.6.

Here we prepare some notations. For integer-valued functions
f and g in a query description, f ; g denotes that the defi-
nition of g syntactically contains function calls of f in its non-
predicate part. For example, f ; g holds when g(x · a) =
if · · · then · · · f(x) · · · else · · · , and f ; g may not hold when
g(x ·a) = if (f(x) ≤ n) then · · · else · · · . The transitive closure
of ; is denoted by +

;. Intuitively f
+
; g means a result of g would

contain a result of f . We use the same notation for integer-valued
expressions by regarding them as integer-valued functions.

4.1 Basic Idea
First, we sketch our derivation of an optimal path querying algo-
rithm. We derive the algorithm by reducing an optimal path prob-
lem into a usual shortest path problem. The key is the notion of case
analyses: we first find out case analyses that are necessary for deter-

2

ÂÂ?
?

?
?

8
+3?>=<89:;v

4

??Ä
Ä

Ä
Ä

5
+3
⇒

2 //?>=<89:;v

ÀÀ;
;;

;;
;;

;;
4 //

8
//?>=<89:;v

AA¤¤¤¤¤¤¤¤¤

5
//

5 + C4

Figure 2. Reducing the shortest path problem with transit costs
into a usual shortest path problem. Double-lines arrows stand for
edges of riding on a train, broken arrows stand for edges of walking,
and C stands for the cost for a transit.

↓
?>=<89:;76540123s0

&.
44

gÂ
W

?>=<89:;76540123s1jj jfc_[X fn

Figure 3. A DFA representing the structure of case analyses of the
shortest path problem with transit costs. The state s1 corresponds to
the situation of riding on a train, and s0 corresponds to the others.
Double-lines arrows are transitions when the DFA takes an edge of
riding on a train, and broken arrows are transitions when it takes an
edge of not riding on a train. s0 is the initial state, and both s0 and
s1 are final states.

mining optimality of paths, and then, we construct a graph whose
shortest path is the optimal path of the original graph.

Consider the shortest path problem with transit costs, which we
have seen in Section 3.2. Notice that for determining optimality,
it is necessary to distinguish whether we are riding on a train or
not, because it affects the value of the objective function. Based on
this case analysis, we can reduce the problem into a shortest path
problem, as shown in Figure 2. To distinguish these two cases, we
divide the node v into two: one corresponds to the case of riding
on a train, and the other corresponds to the case of not riding on a
train. Then, the shortest path on the right graph is the optimal path
on the left graph.

Although this approach is applicable for a large set of problems,
there are two issues. The first issue is correctness. How can we give
an appropriate reduction? Here we give a systematic method based
on product construction. We construct a DFA that represents the
structure of case analyses, and derive a reduction by making a prod-
uct of the DFA and the underlying graph. The second issue is effi-
ciency. In general, the reduction makes the underlying graph much
larger and derives practically inefficient algorithms. We solve the
second issue by by-need evaluation, that is, we delay the construc-
tion of the product as possible. We will give a detailed explanation
of by-need evaluation in Section 4.3, and we focus on product con-
struction in the following.

Now let us demonstrate our method with the example, short-
est path problems with transit costs. First, notice that the recursive
function walk in the query description retains the information cor-
responding to the case analysis that is necessary to determine op-
timality of paths. It is not accidental, and we can always find suf-
ficient information from recursive functions. Because the values of
recursive functions for x (e.g. walk(x)) are sufficient to compute
values for x · a (e.g. cost(x · a)), the values for x give sufficient
information to determine optimality of the case of x · a.

Next we specify the recursive function by a transition function
of a DFA. Figure 3 shows the DFA corresponds to the recursive
function walk . Symbols of the DFA are edges. The initial state is
s0, which corresponds to the case where walk -value is True , that

is, we are not on a train. When we ride on a train, the state becomes
s1, which corresponds to the case where walk -value is False . It
turns into s0 when we get off a train. Both s0 and s1 are final states,
because walk -values do not affect to feasibility.

Finally, we reduce the problem into a shortest path problem.
As mentioned, product construction works well. The product of the
DFA in Figure 3 and the underlying graph (e.g., the left of Figure 2)
yields the graph that gives a reduction into a shortest path problem
(e.g., the right of Figure 2). The weights of edges are given by the
objective function cost . After all, we can solve the problem.

4.2 Reducing Optimal Path Problems into Shortest Path
Problems

Now let us consider generic cases, where let {p0, p1, . . . , pm}
and {f0, f1, . . . , fn} be respectively the whole set of boolean-
valued functions and integer-valued functions (including the ob-
jective function) in the description.

As mentioned, we would like to construct a DFA that represents
the structure of case analyses by regarding the set of recursive
functions as a transition function of the DFA. However, a recursive
function cannot be a transition function of the DFA when the
size of its range is infinite, because the range of the recursive
function corresponds to the set of states of the DFA. This finiteness
guarantees the termination of the algorithm and thus indispensable.

To resolve this problem, we set a cut-off to each integer-valued
function. For each integer-valued function f , we define its cut-off
version f̂ : E∗ → (Z+ ∪{∞}) as follows, where a set I stands for
all inequalities in the description and we regard max(∅) as −∞.

f̂(x)
def
=

f(x) if f(x) ≤ max{n | (e ≤ n) ∈ I ∧ f

+
; e }

∞ otherwise

The value of f̂ is the same as that of f up to the boundary and
turns into ∞ when it exceeds the boundary. The boundary for f̂
is the maximum right-hand-side value of the inequality whose left-
hand-side value would include some f̂ value. Although the function
f̂ forgets some information of f , it is no problem: when values
that are larger than boundaries are used, integer-valued expressions
result in larger values and inequalities yield false; therefore, their
exact values are needless.

Now let us construct a DFA. The following auxiliary function
state corresponds to the transition function of the DFA.

state(x)
def
= (f̂0(x), . . . , f̂n(x), p0(x), . . . , pm(x))

As required, the range of the function state is finite. Once the
function state is given, it is easy to construct the DFA specify-
ing the structure of case analyses: The symbols are edges; The
initial state is state(ε); The transition function δ is defined as
δ(state(x), a) = state(x · a); The set of final states SF is defined
by SF = { state(x) | x ∈ E∗∧p(x) }, where p is the requirement
for feasible paths. Then, the DFA accepts all sequences of edges
each of which is feasible if it is a path. It is worth mentioning that
the above construction certainly yields a DFA because the δ is a
function, as the following lemma shows.

LEMMA 4.1. If state(x) = state(y) holds for two sequences x
and y, then state(x · a) = state(y · a) holds for any edge a. 2

Furthermore, even though the DFA above forgets some information
of recursive functions, it certainly retains sufficient information of
case analyses, as the following lemmas show.

LEMMA 4.2. For an edge a and two paths x and y such that
state(x) = state(y) and dst(x) = dst(y) hold, x · a is a feasible
path if and only if y · a is a feasible path. 2

LEMMA 4.3. For the objective function h and two sequences x and
y, assume that both state(x) = state(y) and h(x) ≤ h(y) hold.
Then, for any edge a, h(x · a) ≤ h(y · a) holds. 2

Lemmas 4.1, 4.2, and 4.3 tell us that it is sufficient to retain the
minimum-weighted path among those having the same state-
value: Given the objective function h, for any paths x and y
such that all of state(x) = state(y), dst(x) = dst(y), and
h(x) ≤ h(y) hold, y ++ z is a feasible path only if x ++ z is a
feasible path; moreover, h(x ++ z) ≤ h(y ++ z) holds.

Now that we derived the required DFA, which is expressed by
the function state , product construction enables us to solve optimal
path problems.

4.3 Optimal Path Querying Algorithm
To give our optimal path querying algorithm, we prepare an auxil-
iary function pstate defined as follows.

pstate(x)
def
= (f̂0(x), . . . , f̂n(x), p0(x), . . . , pm(x), dst(x))

Roughly speaking, pstate corresponds to the transition function
of the product of state and the underlying graph. Notice that
pstate(x) = pstate(y) is equivalent to state(x) = state(y) ∧
dst(x) = dst(y).

Our optimal path querying algorithm, which corresponds to
Dijkstra algorithm on the product, is the following, where h is the
objective function.

ALGORITHM A (Optimal path querying algorithm).
Input: A graph.
Output: An optimal path if it exists.
(1) Let W be {ε} and N be ∅.
(2) Exit if W = ∅. // There exists no feasible path.
(3) Extract the minimum-h-valued path x from W .
(4) If x is feasible, return x. // x is an optimal path.
(5) Add pstate(x) to N .
(6) For each path z ∈ {x · a | a ∈ E },

(6-a) If pstate(z) ∈ N , do nothing.
(6-b) If ∀y ∈ W : pstate(z) 6= pstate(y), add z to W .
(6-c) If ∃y ∈ W : pstate(z) = pstate(y) ∧ h(z) < h(y),

replace y by z.
(7) Go to (2). 2

THEOREM 4.4. Algorithm A always terminates and returns an
optimal path if it exists.

Proof . Notice that W never contains two paths whose pstate
values are the same. Moreover, W never contains a path whose
pstate value is in N . Therefore, the size of N increases strictly.
Since N is always a subset of the range of pstate , which is finite,
the algorithm terminates.

From Lemmas 4.1, 4.2, and 4.3, it is sufficient to consider
extensions of the minimum-h-valued path for each equivalent set
raised from the value of pstate; thus, paths discarded in the step
(6-c) are unnecessary. From Assumption 3.1, paths are examined
in increasing order of their h-values in the step (4); thus, paths
discarded in the step (6-a) are also unnecessary, because another
path of the same pstate-value and less (or equal) h-value was
considered before. In summary, the algorithm is correct. 2

As explained, each problem is reduced into a shortest path prob-
lem on a larger graph, which is the product of state and the under-
lying graph. However, explicit construction of the larger graph is
inefficient, especially from the viewpoints of computational space.
Algorithm A generates a vertex of the product when the algorithm
runs across it, and terminates when an optimal path is found. There-
fore, Algorithm A constructs the product only if it is necessary to
find the optimal path. It is worth noticing that the recursive function

pstate gives a compressed representation of the product. Hence, we
can extract information of the larger graph in a by-need manner and
accomplish querying efficiently.

Data Structures for Efficient Implementation
While an ideal hash set gives an efficient implementation of N ,
the priority queue W requires a bit complicated data structure. The
data structure needs to support efficient implementation of inserting
an element, extracting the minimum-weighted element, decreasing
the weight of an element, and finding an element of the specified
pstate-value. We prepare a Fibonacci heap with an ideal hash map
for W . The Fibonacci heap stores paths according to their weights.
The hash map associates each pstate-value to the element having
the value in the Fibonacci heap. Notice that we should rearrange
pointers in the hash set after the Fibonacci heap is manipulated.
Therefore, we prepare back pointers from elements in the Fibonacci
heap to the entries of the hash map, and keep their consistency.

After all, operations for W except extract-min are (amortized)
constant time. Extracting the minimum-weighted element from W
takes O(log n) time, where n is the size of W .

Computational Complexity
Let k be the size of the range of state; then the size of the range
of pstate is at most k|V |. We assume that all results of recursive
functions are memoized.

In Algorithm A, the steps (2) to (7) are executed at most k|V |
times. Each execution of the steps (2) to (5) costs O(log(k|V |))
time. Each execution of the step (6) costs amortized O(1) time for
a path (z). The number of such paths is at most k|E|, because each
edge is used at most k times. In summary, the time complexity of
Algorithm A is O(k|V | log(k|V |) + k|E|).

It is worth noticing that the value k depends only on the de-
scription of the query; hence the time complexity of Algorithm A
is polynomial in the size of the graph. However, the value k would
be exponential to the size of the description. For example, a trav-
eling salesman problem requires a description of at least O(|V |)
size, and then the value k becomes O(2|V |); thus, it is an expo-
nential time algorithm, yet it is much more efficient than the trivial
algorithm that takes O(|V |!) time.

4.4 Improving Efficiency of the Optimal Path Querying
Algorithm

We have shown an algorithm to find the optimal path. While the
algorithm is correct, there is room for improvement. For example,
when we want to find the shortest path from a vertex s, paths
whose startpoints are not s are useless. However, naive execution
of Algorithm A results in enumeration of such useless paths. Here
we give two improvements to remove such inefficiency.

The notion of DFA is useful to discuss such improvements, and
we give improvements by examining the DFA represented by state .
It is worth noticing that minimization of the DFA represented by
state is incorrect. For two paths x and y, assume that x ++ z is
feasible if and only if y ++ z is feasible. Then, we may attempt to
merge state(x) with state(y). However, h(x) ≤ h(y) may not
imply h(x ++ z) ≤ h(y ++ z), where h is the objective function,
because different conditional branches may be used to compute
h(x ++ z) and h(y ++ z); thus, merging state(x) with state(y)
will break the property in Lemma 4.3. In other words, we need to
be careful about the branches in the objective function.

To simplify the discussion, we assume the objective function
h is declared using guarded expressions, instead of conditional
expressions, as follows.

h(ε) = n;
h(x · a) = ({φ1} ⇒ e′1) ({φ2} ⇒ e′2) · · · ({φm} ⇒ e′m);

Each e′i must not include any conditional expressions. The above
equation means that the value of h(x) is that of e′i(x) when φi(x)
holds. It is easy to translate conditional expressions into guarded
expressions.

Now let S = (S, E, δ, s0, SF) be the DFA that corresponds to
state . We label each edges by an integer i ∈ {1, . . . , m}, which
stands for the branch used to compute the objective function. Then,
S ′ = (S, E × {1, . . . , m}, δ′, s0, SF) also forms a DFA, where
the transition function δ′ is defined as follows.

δ′(state(x), (a, i))
def
= state(x · a) if φi(x · a)

Our improvements are expressed by the following two lemmas.

LEMMA 4.5. If LS′(state(x)) = ∅ holds for a sequence x, x++ y is
not feasible for any sequence y. 2

LEMMA 4.6. For the objective function h and two sequences x and
y, assume all of LS′(state(x)) ⊇ LS′(state(y)), dst(x) = dst(y),
and h(x) ≤ h(y) hold; then, for any sequences z, x++z is feasible
if y ++ z is feasible, and h(x ++ z) ≤ h(y ++ z) holds. 2

Lemmas 4.5 and 4.6 enable us to find unnecessary paths: they
respectively show how to find paths whose extensions yield no
feasible path and those whose extensions yield no better path than
others. We can implement these improvements by implementing
checks on emptiness and inclusion of regular languages.

Notice that Lemma 4.6 includes minimization of S ′. However,
naive implementation of Lemma 4.6 is inefficient, because it is not
easy to find better (or worse) paths from the priority queue; hence,
minimization of S ′ would be appropriate in general. Lemma 4.6
is useful for more restrictive settings where it is easy to point out
better/worse paths than the given path.

It is worth noting that we can achieve improvements without
information of the input graph by considering constraints on edges
instead of edges: for example, instead of an edge a from a vertex
v1 to a vertex v2 of weight n, it is sufficient to consider a constraint
λa. hd(a) = v1 ∧ tl(a) = v2 ∧ w(a) = n.

4.5 Correspondence to Existing Algorithms
Dijkstra-like algorithms have been proposed for classes of optimal
path problems, and some of them are equivalent to Algorithm A
with the improvements, when the specification of the problem can
be written in our language. In other words, our algorithm is a
generalization of existing algorithms.

FACT 4.7. Algorithm A with the improvements of Lemmas 4.5
and 4.6 is equivalent to the following algorithms except for im-
plementation of the priority queue: Dijkstra algorithm for point-
to-point shortest path problems; the generalized permanent label-
ing algorithm of Desrochers and Soumis (1988) for shortest path
problems with time windows; the heap-Dijkstra algorithm of Sher-
ali et al. (2006) for approach-dependent, time-dependent, label-
constrained shortest path problems. 2

In the algorithms above, like ours, problems are reduced into
shortest path problems and solved by implicit application of Dijk-
stra algorithm. Our construction of pstate certainly corresponds to
their reductions, and overheads are removed by our improvements.

4.6 Examples
Shortest Path Problem with Transit Costs
From the description of the shortest path problem with transit costs,
seen in Section 3.2, the function state is obtained as follows.

state(x)
def
= (dcost(x), p(x), starts(x), empty(x),walk(x))

dcost(x)
def
= ∞

Query
(Our language)

?

Graph

?
Optimal path querying system

Code generator

(Haskell)
¡

¡¡

@
@@Generated

codes

Graph Searching
Procedure

(C++)

?
Optimal path

Figure 4. Overview of our system

The values of dcost , p, empty are not essential: dcost always
returns ∞ because of absence of inequalities; p always yields
false until an optimal path is found; empty always yields false
for any non-empty paths. In summary, the auxiliary function state
distinguishes paths by values of starts and walk .

Lemma 4.5 tells us that a path x is unnecessary if neither
empty(x) nor starts(x) holds, which corresponds to the case
where x does not start from the vertex s. Thus, the algorithm
enumerates paths starting from s, and paths are distinguished based
on the current vertex and whether we are riding on a train. The
number of paths considered in the step (6) of Algorithm A is at
most 4|V |+ 2, which becomes 2|V |+ 2 after the improvements.

Length-Constrained Shortest Path Problem
The state for a length-constrained shortest path problem is ob-
tained as follows.

state(x)
def
= (ŵsum(x), clen(x), p(x), starts(x), empty(x))

ŵsum(x)
def
= ∞

clen(x)
def
=

len(x) if len(x) ≤ K
∞ otherwise

As the same as the previous example, values of ŵsum , p, and
empty are not important. Paths are distinguished by the values of
starts and clen: whether the path starts from s and how much edges
are used (or, whether more than K edges are used).

Lemma 4.5 tells us that a path x is unnecessary if neither
empty(x) nor starts(x) holds or clen(x) is ∞. The former is the
case where x does not start from s, and the latter is the case that
x consists of more than K edges. Lemma 4.6 tells us that a path x
is unnecessary if there exists a path y such that all of the following
four hold: the destinations of x and y are the same; all values of
p, starts, empty are the same for x and y; clen(x) ≥ clen(y);
wsum(x) ≥ wsum(y). This is the case that the wsum-value of
x is worse than that of y while x uses more edges than y.

The number of paths considered in the step (6) of Algorithm A
is at most 2(K + 2)|V |+ 2, which becomes (K + 1)|V |+ 2 after
the improvements.

5. Optimal Path Querying System
In this section, we report our optimal path querying system and
experimental results. The system is available from the first author’s
website1.

1 http://www.ipl.t.u-tokyo.ac.jp/~morihata/OPQ.tar.gz

minimize wsum(x)
s.t. len(x) <= 20 && st0(x) && to1(x)
where
wsum() = 0;
wsum(x.e) = w(e) + wsum(x);
len() = 0;
len(x.e) = 1 + len(x);
empty() = true;
empty(x.e) = false;
st0() = false;
st0(x.e) = st0(x) || (empty(x) && from(e,0));
to1() = false;
to1(x.e) = to(e,1);

Figure 5. A query description of a length-constrained shortest path
problem.

5.1 Implementation
Figure 4 shows the overview of our system. Querying on our system
consists of two stages. The first stage is code generation, where
the system analyses the query description and generates codes
that consist of information for efficient querying. The second is
graph searching, where the system performs Algorithm A using
the generated codes.

This two-staged implementation improves modularity. First,
these two stages are essentially independent: the first stage only
cares about descriptions of queries, and the second one concen-
trates on searching on graphs. Moreover, since Algorithm A is
essentially Dijkstra algorithm, though a bit generalized, it is pos-
sible to substitute another library for the second stage. Separating
these two would be practical to use our system as a component of
a system.

Code Generator
The code generator is made of three hundred lines of Haskell codes
excluding codes for the parser. It generates C++ codes, which
mainly includes the following four: the definitions of recursive
functions, the definition of the auxiliary function pstate , the re-
quirement for feasible paths, and the improvements.

We only implemented the improvement of Lemma 4.5. To make
the computation of this part faster, we binarize each integer-valued
function by whether the value exceeds the boundary, and decreases
the size of the automaton.

Graph Searching Procedure
Algorithm A is implemented in C++. As mentioned, this part
may be replaced by another library. The program is made of three
hundred lines of codes.

In the implementation, we use a heap instead of a Fibonacci
heap, because Fibonacci heaps are inefficient in practice. Hence
the time complexity is O(k|E| log(k|V |)), where k is the size of
the range of state .

5.2 Example
Figures 5 and 6 respectively show the query description and the
generated C++ codes for a length-constrained shortest path prob-
lem. In the query description in Figure 5, both from(e,0) and
to(e,1) are atomic predicates, where 0 and 1 are identifiers of ver-
texes. In the codes in Figure 6, a constructor val(val v,edge e)
performs the computations and memoizations of recursive func-
tions. The definition of pstate is encoded as a function object
val_eq_t and a hash function val_hash_t. The former is for
heaps, and the latter is for hash sets. The function constraint
is the function to check feasibility. The function unnecessary is
the function to find unnecessary paths, which is obtained from the
improvement of Lemma 4.5.

#include "node_edge.h"

#define PRIME_FOR_HASH 402653189
#define PRIME_FOR_HASH_ 1610612741

struct val {
int wsum;
int len;
bool empty;
bool st0;
bool to1;
node n;
val() {
n = -1;
wsum = 0;
len = 0;
empty = true;
st0 = false;
to1 = false;
}
val(val v,edge e) {
wsum = (e.w+v.wsum);
len = (1+v.len);
empty = false;
st0 = (v.st0 || (v.empty && e.in==0));
to1 = e.out==1;
n = e.out;
}
int weight() const { return wsum; }
static val ninf() {
val v;
v.wsum = INT_MIN;
return v;
}
};

struct val_hash_t {
unsigned long operator()(const val &v) const {
unsigned long long k = v.n;
k = (k * PRIME_FOR_HASH + v.empty) % PRIME_FOR_HASH_;
k = (k * PRIME_FOR_HASH + v.st0) % PRIME_FOR_HASH_;
k = (k * PRIME_FOR_HASH + v.to1) % PRIME_FOR_HASH_;
k = (k * PRIME_FOR_HASH + ((v.len<=20)?v.len:21))

% PRIME_FOR_HASH_;
return (unsigned long)k;
}
} val_hash;

struct val_eq_t {
bool operator()(const val &v, const val &w) const {
return (
v.n == w.n &&
v.empty == w.empty &&
v.st0 == w.st0 &&
v.to1 == w.to1 &&
((v.len<=20)?v.len:21) == ((w.len<=20)?w.len:21)
);
}
} val_eq;

inline bool constraint(val v) {
return ((v.len<=20) && (v.st0 && v.to1));
}

inline bool unnecessary(val a) {
return (
(a.empty && a.st0 && a.to1 && (a.len>20)) ||
(a.empty && a.st0 && (!a.to1) && (a.len>20)) ||
(a.empty && (!a.st0) && a.to1 && (a.len>20)) ||
(a.empty && (!a.st0) && (!a.to1) && (a.len>20)) ||
((!a.empty) && a.st0 && a.to1 && (a.len>20)) ||
((!a.empty) && a.st0 && (!a.to1) && (a.len>20)) ||
((!a.empty) && (!a.st0) && a.to1 && (a.len<=20)) ||
((!a.empty) && (!a.st0) && a.to1 && (a.len>20)) ||
((!a.empty) && (!a.st0) && (!a.to1) && (a.len<=20)) ||
((!a.empty) && (!a.st0) && (!a.to1) && (a.len>20))
);
}

Figure 6. The C++ codes generated from the query in Figure 5.

RAND1 RAND2 RAND3 RAND4 NY FLA CAL EUSA
|V | 131, 072 131, 072 1, 048, 576 1, 048, 576 264, 346 1, 070, 376 1, 890, 815 3, 598, 623
|E| 524, 288 2, 097, 152 2, 097, 152 4, 194, 304 733, 846 2, 712, 798 4, 657, 742 8, 778, 114

Table 1. Size of graphs

Query (#state) RAND1 RAND2 RAND3 RAND4 NY FLA CAL EUSA
SP-boost 0.11 0.24 1.04 1.55 0.10 0.48 1.06 2.60
SP (1) 0.31 0.77 1.68 3.14 0.29 1.29 2.67 6.52
3-SP (2) 0.84 2.24 3.95 9.11 0.88 4.12 8.90 21.82
TRANS (2) 0.38 1.02 2.02 3.94 0.40 1.79 3.80 9.60
TLEN (42) 1.52 3.36 28.42 20.08 8.10 10.06 14.99 25.02

Table 2. Experimental results (unit: second): the bracketed numbers shows the number of essential states of the DFA state .

5.3 Experiments
The environment of our experiments is the following: dual Intel
Quad-Core Xeon 3.0GHz CPUs; 8GB memory; Mac OS X; g++
4.2.2 and ghc 6.6.1. Only one core was used while the machine had
eight cores.

The following four queries were used: SP (find the point-to-
point shortest path); 3-SP (find the point-to-point shortest path that
passes another given vertex); TRANS (find the shortest path with
transit costs); TLEN (find the shortest path that uses less or equal
to twenty edges of riding on a train). For each specification, the
code generation step finished immediately (less than 0.1 second).
In addition to them, we prepare an implementation of the point-to-
point shortest path querying for comparison. The implementation
is based on Dijkstra algorithm in C++ Boost Graph Library (Siek
et al. 2001), and denoted by “SP-boost”.

We used eight graphs. We generated four graphs randomly,
where the startpoint, endpoint, and weight of each edge were given
uniformly. These four are denoted by RAND1 (relatively small),
RAND2 (dense), RAND3 (sparse), and RAND4 (relatively large).
We borrowed four graphs from the benchmarks of the 9th DI-
MACS implementation challenge2. The four used were travel time
data of NY (New York City), FLA (Florida), CAL (California and
Nevada), and EUSA (Eastern USA). The sizes of graphs are shown
in Table 1. In these graphs, edges had no category information (such
as “train”), and we added it in an ad-hoc manner. We regarded each
node whose identifier is odd as a station and each edge from a sta-
tion to a station as an edge of riding on a train. For each graph, we
uniformly generated 1000 pairs of a starting point and a destination
(and another vertex for 3-SP) of feasible paths, and measured the
average computational times.

The results are shown in Table 2. The bracketed numbers in the
first column are the numbers of states of the DFA state obtained
after applying the improvement of Lemma 4.5, and show the theo-
retical ratios of computation times. To see precise ratios, we count
the number of “essential” states, that is, we neglect states that rep-
resent only the empty path or the optimal path. The other columns
show computational times excluding times for inputting the graph.

On one hand, even for the road network of eastern USA, our sys-
tem returned results of queries in a minute, which is only several
times slower than the point-to-point shortest path querying by an
existing library. It shows promise of our framework. On the other
hand, SP runs two or three times slower than SP-boost. The dif-
ference is the overhead of generality. Especially, Algorithm A re-
quires a data structure that is a bit more complicated than an ordi-
nary heap, as discussed in Section 4.3, and it affects efficiency. It

2 9th DIMACS Implementation Challenge - Shortest Paths. 2006.
http://www.dis.uniroma1.it/~challenge9/.

is worth noticing that the ratio does not go worse when the graph
becomes larger.

The results indicate that more detailed experiments would be
necessary for application-specific uses of our framework. First, real
computational times are not exactly propositional in the theoretical
complexities shown by the numbers of states: TRANS is much
faster than 3-SP; ratios of computational times between TLEN and
others are relatively small in comparison with ratios of numbers
of states. Moreover, computational times depend on combinations
of queries and graphs. For example, the theoretical inefficiency of
TLEN comes to the surface when there are few shortcutting routes
because of the necessity to consider paths of many edges.

Someone may notice that a 3-SP problem can be solved by a
composition of two SP queries: When we want to find a shortest
route from a vertex v1 to a vertex v2 via a vertex v3, it is sufficient
to find the shortest paths from v1 to v3 and from v3 to v2. However,
3-SP is about three times slower than SP on our system. Therefore,
there are rooms for further optimization.

6. Related Works
6.1 Variants of Shortest Path Problems
There are many studies about variants of shortest path problems,
such as additional constraints and variation of costs (Joksch 1966;
Desrochers and Soumis 1988; Romeuf 1988; Punnen 1991; Barrett
et al. 2000; Brodal and Jacob 2004; Villeneuve and Desaulniers
2005; Sherali et al. 2006). Optimal path querying systems were
also proposed. For example, regular-language-constrained shortest
path queries on a time-dependent network are available on the route
planner of TRANSIMS system (Barrett et al. 2002, 2007). We
aimed to give a general framework that includes many of them.
However, there are still several problems that cannot be dealt with
in our framework even though efficient algorithms are known, for
example maximum capacity path problems (Punnen 1991) and
context-free-language-constrained shortest path problems (Barrett
et al. 2000).

In general, we can solve constrained shortest path problems
based on ranking shortest path algorithms (Martins 1984; Eppstein
1998): enumerate paths from shorter ones until a feasible path is
found. Although this procedure works for any constrained shortest
path problems, even termination of the procedure is hard to guar-
antee.

Chan and Zhang (2007) proposed a generic optimal path query-
ing algorithm on spatial databases. What their algorithm can deal
with is, intuitively, a problem satisfying Bellman’s principle of op-
timality (Bellman 1957): each subpath of optimal paths must be op-
timal. While our framework does not require the property, it seems
difficult to implement our framework on spatial databases.

Since we reduced optimal path problems into shortest path prob-
lems, known results about shortest path problems would be useful
for our framework. For instance, while we use Dijkstra algorithm
to find an optimal path, use of A* search algorithms or the bidirec-
tional Dijkstra search algorithm would improve efficiency. Ranking
shortest path algorithms (Martins 1984; Eppstein 1998) might be
also useful to obtain nearly-optimal results.

6.2 Derivation of Optimal Path Querying Algorithm
Our derivation of the optimal path querying algorithm consists of
three parts: designing a language from which we can obtain suffi-
cient information of case analyses; reducing optimal path problems
into shortest path problems; constructing an efficient graph search-
ing procedure based on by-need evaluation.

The design of our language is highly influenced by the work of
Sasano et al. (2000). They gave a generic solution for a class of
optimization problems on a tree, called maximum marking prob-
lems, where recursive functions are used to specify problems. In
our previous work (Morihata et al. 2007), we generalized the result
of Sasano et al. and showed derivations of algorithms for regular-
language-constrained shortest path problems. In this paper, we gave
a shape to the idea by designing a query language.

Ogawa et al. (2003) also gave a framework to query and analyze
graphs efficiently based on recursive functions. Their work requires
the underlying graph to be k-tree decomposable and users to write
recursive function on the structure of tree decompositions. Such
requirements make the use of the framework hard.

Neither the use of product construction nor by-need evaluation
is our new invention. Romeuf (1988) showed that regular-language-
constrained shortest path problems can be reduced into shortest
path problems by product construction. Similar approaches were
also adopted by de Moor et al. (2003) and Liu et al. (2004) to obtain
algorithms for regular path queries. Barrett et al. (2002) and Sherali
et al. (2006) used by-need evaluation in their optimal path querying
algorithms.

We derived an algorithm based on finite state automata. In
fact, our derivation follows classic results about correspondence
among finite state automata, dynamic programming, and shortest
path problems. Karp and Held (1967) showed that finite state au-
tomata gave good characterization of dynamic programming algo-
rithms. Ibaraki (1973, 1978) extended their results, and showed that
once a problem is specified in terms of a finite state automaton, we
can solve the problem by algorithms for shortest path problems.

7. Conclusion
In this paper, we have proposed a query language for optimal path
problems. The use of recursive functions enable us to describe a
wide range of problems. We have shown a derivation of an optimal
path querying algorithm, in which recursive functions played an
essential role. We also have implemented our idea as an optimal
path querying system to evaluate our approach, which reveals it
successful.

For further studies, it would be interesting to design a query
language that is easier to write. For example, use of regular expres-
sions or monadic second-order logic would be helpful to specify
queries. Experiments with practical applications would be another
interesting topic.

Acknowledgments
Authors are grateful to Zhenjiang Hu for his advice to study op-
timal path problems, Nanao Kita for her careful proofreading of
our early draft, JSSST-SIG-PPL members for discussions about im-
provement of our system, and anonymous referees of ICFP 2008 for

their helpful comments. The first author is supported by the Grant-
in-Aid for JSPS research fellows 20 · 2411.

References
Christopher L. Barrett, Riko Jacob, and Madhav V. Marathe. Formal-

language-constrained path problems. SIAM Journal on Computing, 30
(3):809–837, 2000.

Christopher L. Barrett, Keith Bisset, Riko Jacob, Goran Konjevod, and
Madhav V. Marathe. Classical and contemporary shortest path prob-
lems in road networks: Implementation and experimental analysis of the
TRANSIMS router. In Algorithms - ESA 2002, 10th Annual European
Symposium, Rome, Italy, September 17-21, 2002, Proceedings, volume
2461 of Lecture Notes in Computer Science, pages 126–138. Springer,
2002.

Christopher L. Barrett, Keith Bisset, Riko Jacob, Goran Konjevod, Mad-
hav V. Marathe, and Dorothea Wagner. Label constrained shortest path
algorithms: An experimental evaluation using transportation networks.
Technical report, Virginia Tech (USA), Arizona State University (USA),
and Karlsruhe University (Germany), 2007.

Richard Bellman. Dynamic Programming. Princeton University Press,
1957.

Gerth Stølting Brodal and Riko Jacob. Time-dependent networks as models
to achieve fast exact time-table queries. Electronic Notes in Theoretical
Computer Science, 92:3–15, 2004.

Edward P. F. Chan and Jie Zhang. A fast unified optimal route query eval-
uation algorithm. In Proceedings of the Sixteenth ACM Conference on
Information and Knowledge Management, CIKM 2007, Lisbon, Portu-
gal, November 6-10, 2007, pages 371–380. ACM, 2007.

Oege de Moor, David Lacey, and Eric Van Wyk. Universal regular
path queries. Higher-Order and Symbolic Computation, 16(1-2):15–35,
2003.

Martin Desrochers and François Soumis. A generalized permanent labeling
algorithm for the shortest path problem with time windows. INFOR, 26:
191–212, 1988.

David Eppstein. Finding the k shortest paths. SIAM Journal on Computing,
28(2):652–673, 1998.

Sergio Flesca, Filippo Furfaro, and Sergio Greco. Weighted path queries on
semistructured databases. Information and Computation, 204(5):679–
696, 2006.

Toshihide Ibaraki. Solvable classes of discrete dynamic programming.
Journal of mathematical analysis and applications, 43(3):642–693,
1973.

Toshihide Ibaraki. Branch-and-bound procedure and state-space represen-
tation of combinatorial optimization problems. Information and Control,
36(1):1–27, 1978.

Donald B. Johnson. Efficient algorithms for shortest paths in sparse net-
works. Journal of the ACM, 24(1):1–13, 1977.

H. C. Joksch. The shortest route problem with constraints. Journal of
Mathematical analysis and applications, 14:191–197, 1966.

Richard M. Karp and Michael Held. Finite-state processes and dynamic
programming. SIAM Journal on Applied Mathematics, 15(3):693–718,
1967.

Turgay Korkmaz and Marwan Krunz. Multi-constrained optimal path
selection. In Proceedings IEEE INFOCOM 2001, The Conference on
Computer Communications, Twentieth Annual Joint Conference of the
IEEE Computer and Communications Societies, pages 834–843, 2001.

Yanhong A. Liu, Tom Rothamel, Fuxiang Yu, Scott D. Stoller, and Nanjun
Hu. Parametric regular path queries. In Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and
Implementation 2004, Washington, DC, USA, June 9-11, 2004, pages
219–230. ACM, 2004.

Ernesto Q. Vieira Martins. An algorithm for ranking paths that may contain
cycles. European Journal of Operational Research, 18(1):123–130,
1984.

Alberto O. Mendelzon and Peter T. Wood. Finding regular simple paths in
graph databases. SIAM Jornal on Computing, 24(6):1235–1258, 1995.

Akimasa Morihata, Kiminori Matsuzaki, Zhenjiang Hu, and Masato Take-
ichi. Calculus of minimals: Deriving dynamic-programming algorithms
based on preservation of monotonicity. Technical Report METR 2007-
61, Department of Mathematical Informatics, University of Tokyo, 2007.

Mizuhito Ogawa, Zhenjiang Hu, and Isao Sasano. Iterative-free program
analysis. In Proceedings of the Eighth ACM SIGPLAN International
Conference on Functional Programming, ICFP’03, Uppsala, Sweden,
August 25-29, 2003, pages 111–123. ACM, 2003.

Abraham P. Punnen. A linear time algorithm for the maximum capacity
path problem. European Journal of Operational Research, 53(3):402–
404, 1991.

Jean-François Romeuf. Shortest path under rational constraint. Information
Processing Letters, 28(5):245–248, 1988.

Isao Sasano, Zhenjiang Hu, Masato Takeichi, and Mizuhito Ogawa. Make
it practical: a generic linear-time algorithm for solving maximum-
weightsum problems. In Proceedings of the 5th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP’00, pages 137–
149. ACM, 2000.

Hanif D. Sherali, Chawalit Jeenanunta, and Antoine G. Hobeika. The
approach-dependent, time-dependent, label-constrained shortest path
problem. Networks, 48(2):57–67, 2006.

Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph
Library: User Guide and Reference Manual. Addison-Wesley, 2001.

Daniel Villeneuve and Guy Desaulniers. The shortest path problem with
forbidden paths. European Journal of Operational Research, 165(1):
97–107, 2005.

A. Proofs of Lemmas
Here we give proofs of lemmas. Note that we regard each expres-
sion in the description as a function that takes a path and returns a
value.

LEMMA A.1. For each boolean-valued expression φ in the de-
scription, φ(x · a) = φ(y · a) holds if state(x) = state(y) holds.

Proof . Inequalities are the only nontrivial construction. We will
proof it by contradiction.

Assume that e(x · a) ≤ n < e(y · a) holds for an inequality
“e ≤ n”. Then, there exists an integer-valued function g ; e
such that g(x) < g(y) holds. Since state(x) = state(y) holds,
g(x) < g(y) implies ĝ(x) = ĝ(y) = ∞. From the definition
of ĝ and the fact g ; e, ĝ(x) = ∞ implies g(x) > n, which
contradicts e(x · a) ≤ n. 2

LEMMA A.2 (Lemma 4.1). If state(x) = state(y) holds for two
sequences x and y, then state(x · a) = state(y · a) holds for any
edge a.

Proof . From Lemma A.1, p(x ·a) = p(y ·a) holds for all boolean-
valued functions p in a description; thus, it is sufficient to show
f̂(x · a) = f̂(y · a) holds for all integer-valued functions f in a
description. We will proof it by contradiction.

Assume that f̂(x · a) < f̂(y · a) holds. From Lemma A.1,
the same branches are chosen at all conditional expressions in the
computations of f̂(x · a) and f̂(y · a). Therefore, there exists an
integer-valued function g ; f such that g(x) < g(y) and g is
certainly called when f̂(x · a) and f̂(y · a) are evaluated. Since
state(x) = state(y) holds, g(x) < g(y) implies ĝ(x) = ĝ(y) =

∞. Now let u be the boundary used in f̂ ; then, ĝ(x) = ∞ implies
g(x) > u, because f

+
; e implies g

+
; e for any expression e.

However, g(x) ≤ f(x · a) holds from construction of f , which
implies u < f(x · a). In summary, f̂(x · a) = ∞ holds and it
contradicts f̂(x · a) < f̂(y · a). 2

LEMMA A.3 (Lemma 4.2). For a edge a and two paths x and y
such that pstate(x) = pstate(y) holds, x · a is a feasible path if
and only if y · a is a feasible path.

Proof . From the definition of pstate , dst(x) = dst(y) holds;
hence x · a is a path if and only if y · a is a path. Moreover,
state(x) = state(y) holds; hence, from Lemma A.1, x · a is
feasible if and only if y · a is feasible. 2

LEMMA A.4 (Lemma 4.3). For the objective function h and two
sequences x and y, assume that both state(x) = state(y) and
h(x) ≤ h(y) hold. Then, for any edge a, both h(x · a) ≤ h(y · a)
hold.

Proof . The value of h(x · a) is determined from the value of
recursive function calls and values determined from a. Recall that
the body of h includes no function calls except for that of h.
Moreover, from Lemma A.1, the same branches are chosen to
evaluate h(x · a) and h(y · a). Now the difference of h(x · a) and
h(y ·a) comes from only the value of h(x) and h(y). Since h(x) ≤
h(y) holds from an assumption, we can conclude h(x·a) ≤ h(y·a)
from construction of h. 2

LEMMA A.5 (Lemma 4.5). If LS′(state(x)) = ∅ holds for a se-
quence x, x ++ y is not feasible for any sequence y.

Proof . It is evident because y ∈ LS′(state(x)) is equivalent to that
x ++ y is feasible if we ignore the labels. 2

LEMMA A.6 (Lemma 4.6). For the objective function h and two
sequences x and y, assume that all of LS′(state(x)) ⊇ LS′(state(y)),
dst(x) = dst(y), and h(x) ≤ h(y) hold; then, for any sequences
z, x++z is feasible if y++z is feasible, and h(x++z) ≤ h(y++z)
holds.

Proof . As similar to the case of Lemma 4.5, it is evident that
LS′(state(x)) ⊇ LS′(state(y)) implies that x++z is feasible if y++z
is feasible.

Consider z′ ∈ LS′(state(y)), and let z be an sequence obtained
by removing labels from z′. Since z′ ∈ LS′(state(x)) holds, the
branches used for computing h(x ++ z) from h(x) is the same as
that for h(y ++ z) from h(y). Therefore, h(x ++ z) ≤ h(y ++
z) holds from the construction of h, as similar to the proof of
Lemma A.4. 2

