
Master Thesis

Relationship between Arguments and Results

of Recursive Functions

（再帰関数の引数と返値の関係に関する研究）

Akimasa Morihata

（森畑 明昌）

Supervisor: Professor Masato Takeichi

Department of Mathematical Informatics

University of Tokyo

January 27, 2006

iii

Abstract

In functional programming, arguments (inputs of functions) and results (outputs of func-
tions) are not symmetric. Things being natural and suitable for arguments may not be
natural for results, and vice versa. Such asymmetry is not suitable for program construc-
tion and program manipulation. We need some guideposts so that we would not lose our
way by these kinds of asymmetry.

In this thesis, we introduce a novel program transformation called IO swapping, which
makes a new recursive function whose call-time computations (computations managed
in arguments) and return-time computations (computations managed in results) are the
return-time computations and call-time computations of the old one, respectively, yet
guarantees that the old and new recursive functions compute the same value. IO swap-
ping therefore introduces symmetry of arguments and results at the level of the program
elements. Moreover, IO swapping is easy to combine with other program manipulation
techniques and it enable to derive the IO-swapped manipulation of an existing one. Using
IO swapping, we do not suffer from the asymmetry of program manipulations anymore.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Asymmetry between Arguments and Results . 1
1.3 Related Work . 3
1.4 Organization of This Thesis . 4

2 Preliminaries 5
2.1 Functional Programming . 5

2.1.1 Lambda Calculus . 5
2.1.2 Church Encoding and Structural Recursion . 8
2.1.3 Basic Notations for Functional Programs . 10

2.2 Attribute Grammars . 11
2.2.1 Attribute Grammars . 11
2.2.2 Attribute Grammars as a Functional Programming Paradigm 13

2.3 Accumulative Functions and Circular Functions . 15
2.3.1 Accumulative Functions . 15
2.3.2 Circular Functions . 16

3 Fusion 19
3.1 Why Fusion Matters . 19
3.2 Fusion based on Folding-Unfolding Transformation . 20
3.3 Fold Promotion . 21
3.4 Higher-Order Promotion . 24
3.5 Shortcut Deforestation . 25
3.6 Tupling . 27
3.7 Descriptional Composition . 29
3.8 Shortcut Deforestation based on Descriptional Composition 32

4 IO Swapping 35
4.1 IO Swapping . 35
4.2 The Proof of IO Swapping . 38
4.3 Characteristics of IO Swapping . 40
4.4 IO Swapping on Structural Recursions over Lists . 41
4.5 IO Swapping on Trees . 42

v

vi CONTENTS

5 Play with TABA Using IO Swapping 45
5.1 There And Back Again . 45
5.2 List Reversal . 46
5.3 Symbolic Convolution . 46
5.4 Palindrome Detecting . 48
5.5 Symbolic Convolution Revisited . 50

6 Reinforce the Power of Transformations by IO Swapping 53
6.1 IO Swapping as a Meta Transformation . 53
6.2 Higher-Order Removal for Accumulative Arguments 55
6.3 Fusing Accumulative Functions . 57
6.4 Discussion : Manipulation of Recursive Functions . 59
6.5 Meta Transformations for Non-linear Recursions . 61

6.5.1 Problems of Manipulating Non-linear Recursive Functions 61
6.5.2 Fusion for Accumulative Functions on Tree . 62
6.5.3 Removing Higher-Order Accumulative Arguments on Tree 65

7 Manipulating Circular Functions 69
7.1 Relating Circular and Accumulative Functions . 69
7.2 Fusing Circular Functions . 70

8 Conclusion 77

Acknowledgements 79

Bibliography 81

Chapter 1

Introduction

1.1 Background

Since computers were invented, they have made remarkable progress. Their number, power, applica-
tion, and theory have grown every year. Today they are indispensable to our lives. Large and small
computers support our lives everywhere. No system works properly without computers.

Along with increasing importance of computers, the importance of programs, especially correct
and efficient ones, have been increasing. We hope that our programs work correctly but use a small
amount of computational resources. But here we have a serious dilemma. On one hand, we need to
produce involved programs that are efficient. On the other hand, we need to produce simple programs
to confirm correctness. We cannot produce correct and efficient programs in naive ways.

To solve this dilemma, calculational programming [BdM96] (or program calculation) is proposed.
In calculational programming, we first construct a correct program that may be terribly inefficient,
and after that we improve its efficiency with program manipulation technique. The methodology of
calculational programming is a guidepost of program construction; calculational programming gives
a global map, which shows where we start and where we want to go, while program manipulation
methods work as road signs, which show a prospect of improving efficiency. Calculational programming
has succeeded in developing various kinds of programs, and what we need are more road signs to show
a proper route.

1.2 Asymmetry between Arguments and Results

In functional programming, arguments (inputs of functions) and results (outputs of functions) are
not symmetric. Things being natural for arguments may not be natural for results, and vice versa.
Here we give three examples of such asymmetry that are not suitable for program construction and
program manipulation.

(1) Asymmetry of program elements
Usually programs iterate their computations over arguments. For example, the function reverse,

which takes a lists [a1, a2, . . . , an] and reverses it as [an, an−1, . . . , a1], is programed as follows.

reverse x = rev x []

where rev [] h = h

rev (a:x) h = rev x (a:h)

The function reverse iterates its auxiliary function rev over its input list. It is a quite usual de-
scription of recursive functions, and many theories and techniques have been introduced to recognize

1

2 CHAPTER 1. INTRODUCTION

and manipulate such programs [Bir84a][MFP91][HIT99][CDPR99][Voi04]. In contrast, Danvy and
Goldberg proposed a program pattern There And Back Again [DG02] (or in short, TABA) where pro-
grams iterate their computations over its results. For example, we can program rev_n that is actually
reverse of TABA pattern as follows.

rev_n x = let ([],r) = rev’ x in r

where rev’ [] = (x,[])

rev’ (b:y) = let (a:x’,r’) = rev’ y

in (x’,a:r’)

The function rev_n iterates the computation of rev’ over its results. Though TABA programs have
nothing strange except for iteration over results, they are interesting but puzzling. It is not clear that
how to recognize, how to use, how to analyze, and how to manipulate such programs.

(2) Asymmetry of computation dependencies
Usually a program computes its results from its arguments. In contrast, circular programs [Bir84b],

use their results as their arguments as follows:

repmin t = let (r,m) = aux t m in r

where aux (Node l r) m = let (lr, lm) = aux l m

(rr, rm) = aux r m

in (Node lr rr, min lm rm)

aux (Leaf n) m = (Leaf m, n)

where repmin takes a tree and replaces the values of leaves by the minimum value in the tree. In this
program, the variable m is computed by a function call aux t m where m is also used as an input of
aux. To be precise, the aux computes its arguments from its results. It is not intuitive, and raises
similar problems with TABA. Actually, there is little research about manipulation of circular programs
though they are introduced two decades ago.

(3) Asymmetry of program manipulations
In many cases, program manipulation methods that naturally fit to results are not directly ap-

plicable to arguments and vice versa. For example, consider the problem of higher-order removal. It
is well known that η-expansion effectively achieves higher-order removal of results. For the following
function sumH, whose auxiliary function sum’ returns a function value,

sumH x = let r = sum’ x in r 0

where sum’ [] = id

sum’ (a:x) = \h−>a+(sum’ x h)

η-expansion immediately gives a first-order definition as follows.

sumH’ x = = sum’ x 0

where sum’ [] h = h

sum’ (a:x) h = a+(sum’ x h)

In spite of such an effective use for higher-order removal of results, η-expansion can do nothing for
accumulative arguments that produce function values. For example, it cannot work for the following
sumCP function.

sumCP x = sum’ x id

where sum’ [] r = r 0

sum’ (a:x) r = sum’ x (\h−>a+(r h))

1.3. RELATED WORK 3

In short, if we define one program transformation, we might have to prepare two versions, one for
arguments and the other for results.

Such kinds of asymmetry disturb construction and manipulation of programs. We have been
suffering from them. But there seem some criteria to translate between something of arguments and
that of results. What we need is a criterion that will be a guidepost so that we would not lose our
way by these kinds of asymmetry.

In this thesis, we introduce a novel program transformation called IO swapping. IO swapping
makes a new recursive function whose call-time computations (computations managed in arguments)
and return-time computations (computations managed in results) are the return-time computations
and call-time computations of the old one, respectively, yet guarantees that the old and new recursive
functions compute the same value. For example, we can derive rev_n above from usual reverse using
IO swapping, and vice versa. Now we never suffer from the asymmetry of both program elements and
computation dependencies, because we can exchange arguments with results by IO swapping.

IO swapping is easy to be combined with other program manipulation techniques. Moreover, IO
swapping works as a meta transformation with other program manipulation techniques. A program
manipulation with IO swapping becomes a new program manipulation which is IO-swapped manip-
ulation of the old one. For example, we can derive a higher-order removal method for accumulative
arguments from η-expansion with IO swapping. As we will see later in Section 6.2, this higher-order
removal method transforms the sumCP function above into the following usual first-order definition.

sumCP x = sum’’ x

where sum’’ [] = 0

sum’’ (a:x’) = let v = sum’’ x’

in a+v

Now we do not suffer from the asymmetry of program manipulations anymore.

1.3 Related Work

Our work is very closely related to TABA work of Danvy and Goldberg [DG02]. We found the IO
swapping rule for deriving TABA programs systematically [MKHT05a][MKHT05b]; later we found
that its effect was not restricted to derivation of TABA programs. The detailed discussions are going
to be given in Chapter 5.

It is well known in functional community that manipulation of accumulative programs is trouble-
some. In contrast, attribute grammars (in short, AGs) [Knu68] give a good abstraction for accumula-
tive programs. Many AG-based program transformation methods for accumulative functions have been
proposed [Küh98][Küh99][CDPR99][Voi04], and part of a composition method of AGs was translated
into the functional programming world as a higher-order removal method [Nis04]. AGs also have bene-
fits on the treatments of circular programs [Joh87][Sar99]. However, AGs are not functional programs;
expressiveness is different and the translation between AGs and functional programs is troublesome.
After all, AG-based methods are hard to be combined with other functional-programming-based meth-
ods. One of our aims is to bridge the gap between the functional world and the world of AGs so that
we can enjoy the benefits of AGs within the functional programming world, without jumping into
the world of AGs. The reason why AGs make manipulations of accumulative functions easy is the
symmetric treatments over arguments and results. This is what IO swapping aims for, and why our
approach is able to enjoy the benefits of AGs. We are going to address about relationship among AGs,
functional programing, and our works throughout this thesis, in particular in Chapters 2 and 3.

4 CHAPTER 1. INTRODUCTION

IO swapping is also related with circular programs [Bir84b]. There have been few researches about
their application and transformation in functional community, since circularity is not intuitive and
its existence disturbs manipulation of programs. IO swapping use circular programs intensively, and
show that circularities are nothing but IO-swapped variants of accumulations. We are going to discuss
the manipulation of circular programs in Chapter 7.

IO swapping has a relationship with logic programming or relation-based programs. From the
viewpoint of logic programming, IO swapping manages to change the order to construct the proof tree.
If the original program constructs a proof tree from its root to its leaf, IO-swapped one constructs it
from its leaf to its root, but the resulting trees are the same. The relationship will be explained using
the notation of relational AGs [DM93], in Section 4.1.

It looks possible to cast another view from inversion of the evaluation order [Boi92]. Yet our work
has little relationship with it because IO swapping requires no inverse function. What IO swapping
does is not to change the order of evaluations, but to change dependencies of computations: IO-
swapped functions usually compute arguments after results, in contrast to ordinary functions which
compute results after arguments.

1.4 Organization of This Thesis

The rest of this paper is organized as follows. Chapter 2 gives brief introduction to functional program-
ming and attribute grammars, their notations and basic theories. We also explain about accumulative
programs and circular programs that will be used intensively in this thesis. In Chapter 3, we explain
the known fusion technique, which is one of the most important kinds of program transformation. We
introduce many fusion methods and discuss their power for manipulating accumulative and circular
programs. In Chapter 4, we propose our novel program transformation IO swapping. We explain
its main idea and discuss its properties. In Chapter 5, we demonstrate the effect of IO swapping by
deriving and manipulating TABA programs, and discuss relationship between IO swapping and TABA
programs. In Chapter 6, we explain the use of IO swapping as a meta program transformation, which
makes manipulations of arguments and results symmetrical. In Chapter 7, we discuss manipulation
of circular programs. Finally we conclude our thesis in Chapter 8.

Chapter 2

Preliminaries

In this chapter, we will give a brief introduction of functional programming and attribute grammars.
Each framework gives a theoretical foundation of programs, and leads program manipulation methods
that we will see in Chapter 3. We are also going to explain about accumulative programs and circular
programs whose manipulations are our purposes. We will show two views of them, one is from
functional programming and another is from attribute grammars.

2.1 Functional Programming

In this section, we are going to explain about a taste of functional programming. Starting from the
brief introduction of lambda calculus, the underlying model of computation of functional programming,
we will introduce the notion of Church encoding and structural recursions. Structural recursions play
the central role for program construction and program manipulation. Furthermore they also show the
correspondence between functional programming and attribute grammars that we are going to explain
in Section 2.2. It may be better to refer some textbooks such as [Bar84][Bir98], because we will give
only a brief introduction.

2.1.1 Lambda Calculus

Functional programming is based on lambda calculus. Lambda calculus is a framework where com-
putation is expressed by reduction over lambda terms.

Definition 2.1.1 (Lambda terms).
From a set of variables V, the set of lambda terms Λ is defined recursively as follows.

v ∈ Λ if v ∈ V
MN ∈ Λ if M,N ∈ Λ
λv.M ∈ Λ if v ∈ V and M ∈ Λ

We call the situation of lambda terms of the second rule above as an application of lambda terms,
and that of the third rule as a lambda abstraction.

The definition of lambda terms describes its syntactic representation only. Its semantics, that is to
say its correspondence to computation, is come from a reduction rule over them, called β-reduction.
Before defining β-reduction, we define some words for expressing the circumstance of lambda terms
and variables.

Definition 2.1.2 (Occurrences of a lambda term).
An occurrence of a lambda term is a sequence of {1, 2}. A set of occurrences of a lambda term M ,

5

6 CHAPTER 2. PRELIMINARIES

denoted by O(M), is defined as follows.

O(x) = {ε}
O(MN) = {ε} ∪ {1 · uM | uM ∈ O(M)} ∪ {2 · uN | uN ∈ O(N)}
O(λx.M) = {ε} ∪ {1 · uM | uM ∈ O(M)}

Definition 2.1.3 (Subterms of a lambda term). A subterm of a lambda term M , denoted by M/u,
u ∈ O(M), is defined as follows.

M/ε = M

MN/1 · u = M/u

MN/2 · u = N/u

λx.M/1 · u = M/u

Definition 2.1.4 (Free variables and bound variables).
A variable x of a subterm of a lambda term M such that x = M/u, u ∈ O(M), is said to be free
if M/v 6= λx.(M/v · 1) for all v < u. A set of all free variables in a lambda term M is denoted by
FV(M).

A variable x of a subterm of a lambda term M such that x = M/u, u ∈ O(M), is said to be bound
if it is not free. A lambda abstraction λx.(M/v · 1) is said to be the binder of x if v < u and there is
no v′ such that λx.(M/v′ · 1) and v < v′ < u.

Definition 2.1.5 (Closed lambda terms).
A lambda term M is said to be closed if FV(M) = ∅.

Now we are ready for defining β-reduction.

Definition 2.1.6 (β-reduction).
From a variable x and lambda terms M and N , β-reduction is defined by the following procedure beta.

(λx.M)N ⇒β beta(M, N, x)
beta(x,N, x) = N
beta(y,N, x) = y y 6= x
beta(M1M2, N, x) = beta(M1, N, x)beta(M2, N, x)
beta(λx.M, N, x) = λx.M
beta(λy.M, N, x) = λy.beta(M,N, x) y 6= x, y /∈ FV(N)
beta(λy.M, N, x) = λz.beta(M [z/y], N, x) y 6= x, z /∈ FV(N)

The transitive closure of ⇒β is denoted by ⇒∗
β.

Roughly speaking, β-reduction for lambda application (λx.M)N is rewriting where all free variables
x in M , that is to say all variables whose binder is λx.M , are substituted by N . Note that β-reduction
affect nothing to closed subterms of the applied term.

β-reduction rule shows a correspondence between lambda calculus and computation. Lambda
terms are functions and β-reductions are computation of function applications. We will explain the
correspondence through examples. Assume that natural numbers and arithmetic (+) are defined in
terms of closed lambda terms, for we will show the representation of them in the next subsection.
Then, a function one, which is a constant function and returns 1 for any argument, is expressed as
the following lambda term,

one = λx.1

2.1. FUNCTIONAL PROGRAMMING 7

where we read it as follows: λx. means “this term takes an argument x” and 1 means “and returns
1”. β-reduction rule shows that it certainly returns 1 for any argument v as follows.

one(v) = (λx.1) v

⇒β beta(1, v, x)
= 1

Note that the procedure beta do not rewrite 1 because it is a closed lambda term.
And a function double, which takes a natural number n and computes its double namely n + n, is

expressed as the following lambda term:

double = λx.x + x

because of the following reduction.

double(n) = (λx.x + x) n

⇒β beta(x + x, n, x)
⇒ {- (+) is a closed lambda term -}

beta(x, n, x) + beta(x, n, x)
= n + n

Furthermore, a function plus, which takes two natural number n and m and computes their sum,
namely n + m, is expressed as the following lambda term:

plus = λx.λy.x + y

because of the following reduction.

plus(n)(m) = ((λx.λy.x + y) n) m

⇒β beta(λy.x + y, n, x) m

= (λy.n + y)m
⇒β beta(n + y, m, y)
= n + m

These examples show that lambda abstractions are able to describe function values: The number of
lambda abstractions corresponds to the number of arguments. Applications of lambda terms cor-
respond to function applications. β-reduction corresponds to computation of function applications.
Now we can regard lambda terms with β-reduction as a computation model where function values
are a first class citizen. It is called lambda calculus, which is the underlying computation model of
functional programming. In lambda calculus, lambda terms are called lambda expressions.

Usual lambda calculus has two more rules, called α-renaming and η-expansion.

Definition 2.1.7 (α-renaming).
From variables x, y and a lambda term M , α-renaming is defined as follows.

λx.M ⇒α λy.beta(M, x, y)

Definition 2.1.8 (η-expansion).
From a variable x and a lambda term M , where x is not free in M , then η-expansion is defined as
follows.

8 CHAPTER 2. PRELIMINARIES

M ⇒η λx.Mx

α-renaming and η-expansion rules do not change the semantics of lambda terms given by β-
reduction. Define an equivalence relation =αη by the reflective transitive closure of α-renaming and η-
expansion. Then M =αη M ′ and N =αη N ′ implies that the result of β-reduction over the application
MN is =αη-equivalent to the result of β-reduction of M ′N ′. We can recognize that =αη gives a
semantic equivalence of lambda terms.

From now on we use some abbreviations for lambda terms. Nested lambda abstractions are merged
into one; for example λx y z.M is equivalent to λx.λy.λz.M . We consider that application of lambda
terms are left associative and give no parenthesis for a sequence of applications; for example PQR is
equivalent to (PQ)R.

Though we have explained that β-reduction gives a semantics of lambda terms, there are many
choices of which application we reduce first. For example, think about the following lambda term:

(λa. (λd. d) ((λb. a b) (λc. c a)))

There are two applications of lambda terms in this term. Without determining which one we reduce
first, we cannot give a complete semantics of them. There are two well-known strategies of reduction,
called strict evaluation and lazy evaluation.

In strict evaluation, we should reduce the outermost application of lambda terms such that it is
not inside of any lambda abstractions and the later one of lambda terms which compose a lambda
application is reduced to be a term whose root is not a lambda application. If we choose strict
evaluation strategy, then we compute the example above as follows.

(λa. a) ((λb. b b) (λc. (λd. d) c)) ⇒β (λa. a) ((λc. (λd. d) c) (λc. (λd. d) c))
⇒β (λa. a) ((λd. d) (λc. (λd. d) c))
⇒β (λa. a) (λc. (λd. d) c)
⇒β (λc. (λd. d) c)

In lazy evaluation, we should reduce outermost application of lambda terms such that it is not
inside of any lambda abstractions. If we choose lazy evaluation strategy, then we compute the example
above as follows.

(λa. a) ((λb. b b) (λc. (λd. d) c)) ⇒β (λb. b b) (λc. (λd. d) c)
⇒β (λc. (λd. d) c) (λc. (λd. d) c)
⇒β (λd. d) (λc. (λd. d) c)
⇒β (λc. (λd. d) c)

2.1.2 Church Encoding and Structural Recursion

We have shown that lambda terms and β-reduction give a computational model where functions are
first class citizens. In other words everything is a function in lambda calculus. It seems too restrictive
to use it for practical programming because there are neither primitive values nor data structures. We
are going to show that we can encode both primitive values and data structures by lambda expressions.

First think about boolean values, namely True and False. In many systems or programming
languages boolean values are encoded by integers. For example zero means False and non-zero means
True in programming language C. This is because the most important point is not implementations of

2.1. FUNCTIONAL PROGRAMMING 9

boolean values but the fact that we can distinguish True from False easily. This fact implies that we
can encode boolean values in terms of lambda expressions by defining correspondence between lambda
terms and boolean values appropriately such that we can distinguish True from False. We propose an
appropriate implementation of boolean values by lambda expressions. True takes two branches and
selects the first one. False also takes two branch, and selects the second one.

True = λx y. x
False = λx y. y

It is proper because it fits the use of boolean values. Boolean values are necessary for the if expression
that branches off a computation according to a boolean value. This implementation gives a natural
definition of the if expression as follows.

if = λb x y. b x y

We can also encode other useful operations manipulating boolean values such as and , or and not
by lambda expressions.

and = λa b. a b False
or = λa b. a True b
not = λa. (λx y. a y x)

We have given an encoding of boolean values as their manipulations. To say concrete, in spite of
implementing the algebraic structure boolean values, we use homomorphisms on it. There are many
way to construct the algebraic structure of boolean values. One of the simplest ways is to regard it
as a structure where we have only two elements True and False, and have no operation. Then we
can represent homomorphisms on it by a pair of functions, one corresponding to True and another
corresponding to False. We use homomorphisms on their algebraic structure explicitly to express
boolean values, while they in usual come out implicitly from the if expression.

We can also encode natural numbers in the similar way. The algebraic structure of natural number
has one special value Zero and one operation Succ which takes a value and returns its successor. Zero
and Succ are enough to construct it, because we can generate all natural numbers from them. Then
we can represent homomorphisms by pair of functions, one for Zero and another for Succ. Now we
encode Zero and Succ:

Zero = λx y. y
Succ = λn. (λx y. x (n x y))

From this definition, natural numbers are realized as follows:

1 ≡ Succ Zero = λx y. x y
2 ≡ Succ(Succ Zero) = λx y. x(x y)
3 ≡ Succ(Succ(Succ Zero)) = λx y. x(x(x y))

A natural number n is implemented as the function that takes two functions and compute n times
using the first one after an initialization by the second one. We can naturally implement for expression,
because for corresponds to homomorphisms on natural numbers.

for = λn x y. n x y

We can also apply the same method to encode data structures by lambda expressions. For example,
think about lists. We construct lists from Nil corresponding to empty list, and Cons corresponding

10 CHAPTER 2. PRELIMINARIES

to addition of an element to the head of a list. Nil and Cons define the algebraic structure of lists.
Now we encode lists using homomorphisms on their algebraic structure as follows.

Nil = λx y. y
Cons = λa r. (λx y. x a(r x y))

For example, a list [1, 2, 3] is represented as follows.

[1, 2, 3] ≡ Cons 1 (Cons 2 (Cons 3 Nil))
= λx y. x 1(x 2(x 3 y))

Such homomorphisms on an algebraic structure of a data structure are called structural recursions
or catamorphisms [MFP91], and encoding of values or data structures using structural recursions is
called Church encoding. Using Church encoding, we can introduce primitive values and data structures
to lambda calculus where we can manipulate them by structural recursions. Church encoding and
structural recursions enable lambda calculus to be modeling practical programs. While we do not use
Church encoding in practical functional programming languages for efficiency, it gives a theoretical
foundation.

Structural recursions are also important for program manipulation because of the following two
reasons: First they are easy to manipulate because we can use the underlying algebraic structure.
Secondly they are expressive because they come from the semantics of the underlying data structures.
Later we will show how structural recursions work for program manipulation in Chapter 3.

2.1.3 Basic Notations for Functional Programs

Throughout this thesis, we use the notation of the functional programming language Haskell [Bir98] to
express functional programs. Some syntactic notations we use are as follows. The symbol \ and −> is
used instead of λ and . for λ-abstraction, and the identity function is written as (\x->x). The symbol
⋅ denotes function composition, i.e., (f⋅g) x = f (g x). Parentheses are used to be sectioning an
operation, making a function from an operation, i.e., (+) 2 3 = 2 + 3 = (2+) 3 = (+3) 2. We assume
that evaluation is based on lazy evaluation and associativity of function applications are stronger than
that of operators, and x + f y means x + (f y). We use pattern-matching implicitly, for example, the
meaning of head (a:x) = a, where (a:x) expresses a pattern-matching, is as follows: The function
head takes a non-empty list. A binding is constructed from the pattern-matching where the variable
a corresponds to the first element of the list and x corresponds to the rest of it. The function head

returns a, namely the first element of the list.
Many standard Haskell functions are used in this paper, whose informal definitions are given in

Figure 2.1. All of them are in the Prelude library of Haskell 98 [Has02] and their formal definitions
are found in its manual.

We construct lists as usual from [] namely an empty list, and (:) namely adding an element to
the head of a list. Using Haskell notation, it is expressed as follows.

data [a] = [] | a : [a]

Similarly, we construct leaf-valued binary trees from Leaf namely a leaf of tree having a value, and
Node namely an internal node of tree having two subtrees, as follows.

data Tree a = Leaf a | Node (Tree a) (Tree a)

A function is said to be curried if it takes its arguments one by one, such as (\a b c−>a+b+c). A
function is said to be uncurried if it takes its whole arguments as a tuple, such as (\(a,b,c)−>a+b+c).

2.2. ATTRIBUTE GRAMMARS 11

id x = x
fst (a,b) = a
snd (a,b) = b
uncurry f (a,b) = f a b
div n m = bn/mc
min n m = if n < m then n else m

head [x0,x1,. . .,xn] = x0
tail [x0,x1,. . .,xn] = [x1,x2,. . .,xn]
[x0,x1,. . .,xm,. . .,xn] !! m = xm
[x0,x1,. . .,xn] ++ [y0,y1,. . .,yn] = [x0,x1,. . .,xn,y0,y1,. . .,yn]
take m [x0,x1,. . .,xm,. . .,xn] = [x0,x1,. . .,xm−1]
drop m [x0,x1,. . .,xm,. . .,xn] = [xm,xm+1,. . .,xn]
length [x0,x1,. . .,xn] = n+1
sum [x0,x1,. . .,xn] = x0 + x1 + . . . + xn
and [x0,x1,. . .,xn] = x0 && x1 && . . . && xn
reverse [x0,x1,. . .,xn] = [xn,xn−1,. . .,x0]
cycle [x0,x1,. . .,xn] = [x0,x1,. . .,xn,x0,x1,. . .,xn,x0,x1,. . .]
map f [x0,x1,. . .,xn] = [f x0,f x1,. . .,f xn]
zip [x0,x1,. . .,xn] [y0,y1,. . .,yn] = [(x0,y0),(x1,y1),. . .,(xn,yn)]
foldr f e [x0,x1,. . .,xn] = f x0 (f x1 (· · · (f xn e)· · ·))
foldl f e [x0,x1,. . .,xn] = f (· · · (f (f e x0) x1)· · ·) xn

Figure 2.1. Informal definitions of standard functions

We basically use curried notation, but we hardly distinguish these two notations and we shift one to
another in some time.

We say a value is higher-order if it is a function. In some time we also call higher-order value as
closure. We say a value is first-order if it is not higher-order; it is a primitive value or a data structure
such as an integer, a boolean, a list, and so on.

2.2 Attribute Grammars

2.2.1 Attribute Grammars

Attribute grammars are first proposed by Knuth [Knu68] for denoting a semantics of context free
grammars.

Definition 2.2.1 (Context free grammars).
A context free grammar (or in short, CFG) is a triple G = (V, P, S). V is a finite non-empty set of
grammar symbols. Σ ⊂ V is a set of terminal symbols. N = V \ Σ is a set of non-terminal symbols.
P ⊆ N × V ∗ is a finite set of production rules. S ∈ N is the start symbol.

A CFG constructs a syntax tree from a sequence of terminal symbols. For example, think about
the following CFG, whose terminal symbols are { +, −, val } where val corresponds to integers, a set
of non-terminal symbols is {Exp}, the start symbol is Exp, and production rules are as follows.

Exp → Exp + Exp
| Exp − Exp
| val

12 CHAPTER 2. PRELIMINARIES

Input sequence : 1 + 2 − 3 − 4

����1 �� ����2\\����+ �� ����3\\����- �� ����4\\����-

Figure 2.2. An example of syntax tree (Assume that all
arithmetic operators are left associative)

From now on, we express a CFG only by a set of production rules if others are clear from context. The
CFG above defines a syntax of arithmetic expressions where we have two arithmetic operator + and −.
How it construct a syntax tree from a sequence of terminal symbols are shown in Figure 2.2. It clearly
defines a structure of syntax, but it does not define its semantics. There is no explicit definition of it.
Attribute grammars compose a framework to give a semantics for CFGs.

Definition 2.2.2 (Attribute grammars).
An attribute grammar (or in short, AG) is a triple AG = (G,A, D). G = (V, P, S) is a CFG. A is a
finite set of attributes, partitioned into two sets Asyn(X) and Ainh(X) for each X ∈ V . Elements in
Asyn(X) are called as synthesized attributes and elements in Ainh(X) is called as inherited attributes.
D = (T, E) is the semantic domain of AG where T is a finite set of types and E =

⋃
p∈P Ep is a finite

set of semantic equations.

Note that we usually assume that each element in Ep for p : X0 → X1 · · ·Xn is an equation of
the form:

α = f β1 β2 · · · βk

where f is a function called semantic function, α is an element of (Asyn(X0) ∪ ⋃
i∈{i···n}Ainh(Xi)),

and each βi satisfies βi ∈ (primitive values ∪ {X0, X1, . . . , Xn} ∪ Ainh(X0) ∪
⋃

i∈{i···n}Asyn(Xi)).
An AG gives a semantics to a CFG by adding attributes to symbols and semantic equations

to production rules. Now that we can bring values over the syntax tree constructed by CFG. The
assumption about semantic equations gives some characteristics of synthesized attributes and inherited
attributes: Synthesized attributes bring values from bottom to top of the syntax tree. Inherited
attributes bring values from top to bottom of the syntax tree.

To give a semantics of a CFG by an AG, we should give a semantics to AGs. A semantics of AGs
depends on the semantics of its semantic functions. In this thesis, we give a semantics of semantic
functions by functional programing. It seems not so good, because we can write anything in semantic
function and the framework of AGs is unnecessary, but we write in the framework of AGs as far as
we can.

Now we give a semantics of the previous CFG for arithmetic expression as an example. We define
Ainh(X) = ∅ and Asyn(X) = {r} for all X ∈ V , T = {Integer}, and define E as follows.

Exp → Exp + Exp 〈Exp0.r = Exp1.r + Exp2.r〉
Exp → Exp − Exp 〈Exp0.r = Exp1.r − Exp2.r〉
Exp → val 〈Exp.r = val〉

2.2. ATTRIBUTE GRAMMARS 13

This AG defines the semantics of the CFG. The value of the arithmetic expression X is surely expressed
by its attribute denoted by r. Here 〈 〉 denotes a set of semantic equations corresponding to the
production rule standing its left. Xi.r denotes an attribute r associating with a grammar symbol
X of occurrence i. We count occurrence from left to right. Occurrences are omitted if it is clear
from context. From now on, we express an AG as a set of production rules associating with semantic
equations whenever others are clear from context.

2.2.2 Attribute Grammars as a Functional Programming Paradigm

AGs were first introduced to give a semantics to CFGs [Knu68]. They have been also used for express-
ing computations over structures. The AG of the example in the Section 2.2.1 defines a semantics of
the CFG, but we can recognize that it describes a computation over a structure, namely a syntax tree
expressed by the CFG. This recognition gives a relationship between AGs and functional programs,
especially structural recursions. For example, think about the following function reverse.

reverse x = rev x []

where rev [] h = h

rev (a:x) h = rev x (a:h)

We will express it in terms of an AG. First for all, an AG requires an underlying CFG. We chose a
CFG for lists as the underlying CFG, because the auxiliary function rev is a structural recursion on
lists and we can express the computation of reverse in terms of a computation over structures on
lists. Now we show the following AG:

reverse → List 〈reverse.result = List .r
List .h = []〉

List → a :List 〈List0.r = List1.r
List1.h = a:List0.h〉

List → [] 〈List .r = List .h〉

where the inherited attribute is h and the synthesized attributes are r and results. We show its the
computation structure in Figure 2.3. We can recognize the correspondence between an AG and a
structural recursion. The arguments of the recursion correspond to inherited attributes, except for
the argument that corresponds to underlying data structure. The results of the recursion correspond
to synthesized attributes. The underlying algebraic structure of the structural recursion corresponds
to the underlying CFG of the AG, except for the top case. The top case is the production rule
with associating semantic equations, which describes a production of the start symbol. As the exam-
ple above, we use top case because it corresponds to call of the auxiliary function rev. Based this
correspondence, many researches have done for clarifying and utilizing the relationship between func-
tional programming and AGs [KS86][Joh87][FJMM91][DPRJ96][Sar99][Bac02]. There are also many
researches about their relationship among program transformations of functional programming and
AGs. We are going to introduce and discuss them in Chapter 3.

Although most of the researches use the correspondence that we have shown above, there is another
way to make a correspondence between them. It is introduced by Deransart and MaÃluszyński [DM93]
for giving a correspondence between AGs and logic programming. Using their method, an AG for

14 CHAPTER 2. PRELIMINARIES

½¼

¾»
[]

\
\

º

[2,3,4]
½¼

¾»
2

¿
¿

¡¡µ2

½¼

¾»
:

\
\

@
@

@@R[3,4]½¼

¾»
3

¿
¿

¡µ3

½¼

¾»
:

\
\w

S
S

S
Sw

[4]½¼

¾»
4

¿
¿

¡¡µ4

½¼

¾»
:

[]

h

6

[2,3,4]

r

&%

'$

reverse

6

result

[2,3,4]

Figure 2.3. Computation structure of the AG representation of reverse

reverse is expressed as follows:

reverse → rev 〈reverse.result = rev .r
rev .x = reverse.x
rev .h = []〉

rev → rev 〈rev0.r = rev1.r
a:x = rev0.x
rev1.x = x

rev1.h = a:rev0.h〉
rev → ε 〈[] = rev .x

rev .r = rev .h〉

This approach makes the correspondence between programs and AGs much clearer. Arguments cer-
tainly correspond to inherited attributes. The underlying CFG is the underlying call flow of the
recursive function. Moreover, the expressiveness of AGs are not restricted to structural recursions.
But in this approach, the production of the CFG depends on the semantic equations: Non-terminal
symbol rev becomes ε if and only if the attribute rev .x is [], and rev should produce rev for the other
cases. Now we should treat semantic equations as constraints or logical relations, not as evaluation
rule. The framework where semantic equations express logical relations is called as relational AGs.
The relational AG based view seems a bit troublesome for manipulating functional programming,
though it fits to logic programming very much.

We use the first correspondence between functional programming and AGs for discussing their com-
putations and manipulations. We implicitly assume that there is much more general correspondence
given by relational AGs. Later we are going to see that the first one gives a program transforma-
tion methods such as fusion and tupling in Chapter 3, and the second one gives a novel program
transformation IO swapping in Chapter 4.

2.3. ACCUMULATIVE FUNCTIONS AND CIRCULAR FUNCTIONS 15

2.3 Accumulative Functions and Circular Functions

In this section, we are explaining about accumulative functions and circular functions. We will give
their definition and discuss their characteristics, from viewpoints of both functional programming and
AGs. The explanations about their manipulations will be given in Chapter 3.

2.3.1 Accumulative Functions

An accumulative function is, roughly speaking, a function that accumulates some values in its argu-
ments. One of the typical examples is the following reverse function.

reverse x = rev x []

where rev [] h = h

rev (a:x) h = rev x (a:h)

The function reverse is accumulative because the auxiliary function rev accumulates a list in its
second argument. Strictly speaking, the function rev is accumulative but reverse is not, but we call
reverse as accumulative because most of its computation is managed by an accumulative function
rev. We introduce a notion about arguments.

Definition 2.3.1 (Recursion arguments and accumulative arguments).
A set of arguments of a recursive function are recursion arguments if the structure of the recursive call
is determined according to their values. A set of arguments of a recursive function is accumulative
arguments if the structure of the recursive call does not depend on their values.

For example, the function rev above has one recursion argument namely the first argument, and
one accumulative argument namely the second argument.

Now we can define a notion of recursive functions.

Definition 2.3.2 (Accumulative functions).
A recursive function is said to be accumulative if it has accumulative arguments.

Tail-recursive (or tail-call) is a famous and practically important class of accumulative functions.
Tail-recursive functions compute all its computations in call-time, namely at accumulative arguments.
Consider the function sum for an example. On one hand, sum is usually implemented in terms of a
structural recursion as follows:

sum [] = 0

sum (a:x) = a + sum x

where sum does all of its computations in return-time, namely at the result. On the other hand, sum
is often implemented in terms of tail-recursive functions as follows:

sum x = sumTC x 0

where sumTC [] h = h

sumTC (a:x) 0 = sumTC x (a+h)

where sumTC does all of its computations in call time. Tail-recursive functions are important because
we can optimize it by realizing it by a loop.

All structural recursions are not accumulative. It is because a structural recursion takes exactly
one recursion argument that expresses the structure of the recursion. But structural recursions that
return a higher-order results are essentially equivalent to accumulative functions, because the higher-
order results indicate a necessity of extra arguments to produce first-order results. For example, think
about the following function rev’.

16 CHAPTER 2. PRELIMINARIES

rev’ [] = \h−>h
rev’ (a:x) = \h−> rev’ x (a:h)

This function is a structural recursion over lists and produces a higher-order result. The result of rev’
need an extra list to produce a list. Actually η-expansion enables us to transform it to a first-order
accumulative function, which is the same as the rev above.

From the viewpoint of AGs, the characteristics of accumulative functions is clear. Every AGs hav-
ing inherited attributes corresponds to accumulative functions. This is because the recursion structure
of an AG is determined by the underlying CFG only and every inherited attributes corresponds to an
accumulative argument. As we have seen in Section 2.2.2, AG representation of reverse function has
an inherited attribute.

2.3.2 Circular Functions

A circular function, introduced by Bird [Bir84b], is a function that uses results of a certain recursive call
as arguments of itself. The repmin problem, which is also introduced by Bird, is a typical application.
The problem is to replace its values of leaves by the minimum value in the tree. We can implement it
without using any circularity as follows.

transform t = replace t (tmin t)

where replace (Node l r) m = Node (replace l m) (replace r m)

replace (Leaf n) m = Leaf m

tmin (Node l r) = min (tmin l) (tmin r)

tmin (Leaf n) = n

Bird showed an alternative solution using a circular function as follows.

repmin t = let (r,m) = aux t m in r

where aux (Node l r) m = let (lr, lm) = aux l m

(rr, rm) = aux r m

in (Node lr rr, min lm rm)

aux (Leaf n) m = (Leaf m, n)

In this program, the first call of aux contains circularities expressed in terms of variable m: The variable
m is computed by a function call aux t m where m is also used as an input of aux. Before discussing
detail, we will define a concept of circular functions.

Definition 2.3.3 (Circularity and circular functions).
A circularity is a situation where a result of a certain function call is also used as an argument of that
function call, as follows:

(r0, r1, . . . , rn) = f x1 x2 · · · xk ri xk+1 · · · xm (0 ≤ i ≤ n)

A circularity is local if it occurs inside of recursive calls. A circularity is global if it occurs outside of
recursive calls. Circular functions are the functions that have circularities.

The repmin function has a global circularity, and it has no local circularities because function aux

is not a circular function.
Circular programs are evaluable under lazy evaluation. Under strict evaluation, we should know

the value of m before evaluating aux t m but we need to evaluate aux t m for knowing the value of m.
This conflict produces infinite recursion and gives no result. But lazy evaluation enables us to get the
results. We will confirm it.

2.3. ACCUMULATIVE FUNCTIONS AND CIRCULAR FUNCTIONS 17

First, we express repmin as a structural recursion over trees to use church encoding to express
computation over trees. The structural recursions over trees are expressed by the following function
foldTree.

foldTree g1 g2 (Leaf n) = g2 n

foldTree g1 g2 (Node l r) = g1 (foldTree g1 g2 l) (foldTree g1 g2 r)

The function foldTree expresses homomorphisms over trees, because Leaf is replaced by g2 and Node

is replaced by g1. Now we express repmin by foldTree as follows.

repmin t = fst (repmin’ t)

where repmin’ t = foldTree rn rl t m

m = snd (repmin’ t)

rn l r = \m −> (Node (fst (l m)) (fst (r m)), min (snd (l m)) (snd (r m)))

rl n = \m−> (Leaf m, n)

Now we try to evaluate it on a small tree Node(Leaf 1)(Leaf 2). We use church encoding of trees to
express the structure of the tree and the structural recursion on it. The structure of trees is expressed
by lambda terms as follows.

Node = λl r. (λf g. f (l f g) (r f g))
Leaf = λn. (λf g. g n)

To see the computation process, we compute rempin’ instead of repmin. The computation is repre-
sented by the following reductions over lambda terms.

repmin’ (Node(Leaf 1)(Leaf 2))

⇒ foldTree rn rl (Node(Leaf 1)(Leaf 2)) (snd (repmin’ (Node(Leaf 1)(Leaf 2))))

≡ {- Church encoding -}
(λl r. (λf g. f (l f g) (r f g)))(λf g. g 1)(λf g. g 2) rn rl

(snd (repmin’ (Node(Leaf 1)(Leaf 2))))
⇒∗

β rn (rl 1) (rl 2) (snd (repmin’ (Node(Leaf 1)(Leaf 2))))
⇒∗

β (λm. (Node (fst (rl 1 m)) (fst (rl 2 m)), min (snd (rl 1 m)) (snd (rl 2 m))))
(snd (repmin’ (Node(Leaf 1)(Leaf 2))))

The expression (repmin’ (Node(Leaf 1)(Leaf 2))) is denoted by r∗ for notational convenience. We
continue calculation as follows.
⇒∗

β (Node (fst (rl 1 (snd r∗))) (fst (rl 2 (snd r∗))),
min (snd (rl 1 (snd r∗))) (snd (rl 2 (snd r∗))))

⇒∗
β (Node (fst (Leaf (snd r∗),1))(fst (Leaf (snd r∗),2)),

min (snd (Leaf (snd r∗),1))(snd (Leaf (snd r∗),2)))
⇒∗

β (Node (Leaf (snd r∗)) (Leaf (snd r∗)), min 1 2)
⇒∗

β (Node (Leaf (snd r∗)) (Leaf (snd r∗)), 1)

Pay attention that min (snd (Leaf (snd r∗),1)) (snd (Leaf (snd r∗),2)) do not use the value of r∗,
and lazy evaluation enables us to reduce them into primitive values. We should do the same reduction
as described above for r∗. It is apparent that we eventually get the second component of this term for
r∗, because it comes from the same term. Now we substitute this term into r∗.

⇒∗
β (Node (Leaf(snd(Node (Leaf (snd r∗)) (Leaf (snd r∗)), 1)))

(Leaf(snd(Node (Leaf (snd r∗)) (Leaf (snd r∗)), 1))) , 1)
⇒∗

β (Node (Leaf 1) (Leaf 1), 1)

18 CHAPTER 2. PRELIMINARIES

µ´
¶³
3

¡
¡

¡
¡¡

¡
¡

¡¡µ

m=3

µ´
¶³
1

@
@

@
@@

@
@

@@I

m=1

w¡
¡

¡
¡

¡

¡
¡

¡
¡µ

m=1

µ´
¶³
2

@
@

@
@@

@
@

@@I

m=2

w
m=1

?
n=1

@@

¡¡

µ´
¶³
3⇒1

¡
¡

¡
¡¡

µ´
¶³
1⇒1

@
@

@
@@
w¡

¡
¡

¡
¡

@
@

@@R

n=1
¡

¡
¡¡ª

n=1
µ´
¶³
2⇒1

@
@

@
@@
w
m=1

?
n=1

@
@

@@R

n=1
¡

¡
¡

¡ª

n=1

Figure 2.4. Computation structure of AG representation of repmin

Certainly we can get the correct result by lazy evaluation.
Circular functions are also accumulative functions, because circularities are always expressed by

accumulative arguments. If circularities are expressed by recursion arguments, then we cannot decide
which case of recursions should choose, and we fail to continue computations. In other words, circular
functions are instances of accumulative functions where they have some irregular structures, namely
circularities.

From the viewpoints of AGs, the characteristics of circular programs are apparent. Circularities
are dependencies from inherited attributes to synthesized attributes, where both attributes associated
to the same non-terminal. To confirm this, we show an AG representation of repmin function as
follows:

repmin → Tree 〈repmin.result = Tree.r
Tree.n = Tree.m〉

Tree → Node Tree Tree 〈Tree0.r = Node Tree1.r Tree2.r
Tree0.m = min Tree1.m Tree2.m
Tree1.n = Tree0.n
Tree2.n = Tree0.n〉

Tree → Leaf n 〈Tree.r = Leaf Tree .n
Tree.m = n〉

where n is an inherited attribute and r and m are synthesized attributes. The dependency from
Tree.m to Tree.n in the top case corresponds to the circularity. We show its computation structure
in Figure 2.4. This AG shows that repmin is actually not circular in the sense that no attribute
dependency makes a cycle. It points out that repmin is evaluable by finite times paths of computation
over a tree. Lazy evaluation enables to pack a multi-path computation into a closure and produces its
result in a one-path computation over a tree.

Chapter 3

Fusion

In this chapter, we are going to explain fusion. Fusion is a program transformation that compresses
some functions into one. Starting from explaining why fusion is important, we will do a brief intro-
duction to the existing fusion methods. We will also discuss the manipulation power of the existing
fusion methods, that is to say whether or not they can manipulate accumulative functions and circular
functions.

3.1 Why Fusion Matters

Correctness, reusability and maintainability of programs have been important, because size of pro-
grams has been growing as computational power increases. To get such good characteristics we often
adopt a module-based approach. We prepare reusable primitive functions, construct modules by as-
sembling primitives, and organize large programs by combining modules. The module-based approach
does not only produce reusable programs, but also contribute to their correctness and maintainability
because it enables to divide a program into closed parts and clarify the structure of programs. But it
decreases efficiency, for it often introduces overheads. To make things clear, think about the following
function that computes variance of the input list.

variance x = average (map square (map (\a−>a−average x) x))

where average x = sum x / length x

square x = x * x

This program is apparently correct because it is the direct implementation of definition of variance.
Though the module-based approach lead the easiness of proving correctness of it, it is not efficient.
It performs multiple traversals over data structures and unnecessary construction and destruction
of intermediate data structures. The function average traverses over the input data structure two
times, one for sum and another for length, and average called by map traversals the list many times.
Every function calls of map makes an intermediate list, which is consumed by the next function. These
overheads decline efficiency.

In general, there are much plenty of rooms to optimize a program that is constructed by module-
based approach, because some results of functions are often unnecessary for continuing the rest of
computation. For example, to find the minimum value of a list, we can implement it as follows:

listMin x = head (sort x)

where sort sorts the elements of a list. This is a modular and correct program, but not efficient.
Though out intuition gives that we can solve this problem in O(n) time complexity, where n denotes

19

20 CHAPTER 3. FUSION

the length of the input list, that of listMin is O(n log n) in strict evaluation because of the time
complexity of sort. We can forget the tail of the list while sorting the list because the function head

only needs the head of list. But to achieve this optimization we needs to do inter-procedure analysis,
i.e., sort needs to know that the function waiting for its result is head.

Fusion (or deforestation, in some time) is a program transformation to fuse some functions into
one. Fusion removes overheads of function calls such as multiple traversals and production or con-
sumption of intermediate data structures, and leads possibilities of inter-procedure optimizations. For
example, function variance above is transformed into the following implementation by existing fusion
techniques.

variance x = let (rs, lr, av) = aux x 0 0 in rs / lr

where aux [] s l = (0, l, s/l)

aux (a:x) s l = let (rs, lr, av) = aux x (a+s) (1+l)

in (square (a−av)+rs, lr, av)

Fusion removes a multiple traversals over the input list and intermediate data structures, and improves
efficiency.

In summary, fusion is important to construct modular and yet efficient programs. Using fusion,
we can enjoy not only reusability, maintainability, and correctness but also efficiency.

3.2 Fusion based on Folding-Unfolding Transformation

Folding-unfolding is a program transformation methodology introduced by Burstall and Darling-
ton [BD77]. It consists of the following six rules:

Unfolding: replace a function call by an appropriate instance of body of its definition.

Folding: replace an appropriate instance of body of a function definition by its call.

Definition: introduce a new function definition.

Instantiation: introduce a substitution instance of an existing equation.

Abstraction: abstract out a value by introducing new variables.

Laws: apply some known laws.

Roughly speaking, folding-unfolding is a program manipulation methodology where we try to get
efficient programs by continuously unfolding functions, evaluating subexpressions or applying known
program transformation rules, and folding a subexpression into a function. Folding-unfolding is very
powerful methodology, however, its effect depends on transformation strategy, namely when and how
we apply which rules. To construct effective and terminate strategy is very hard.

Wadler [Wad88] proposed an effective and terminate fusion method based on folding-unfolding
methodology. He calls his method as deforestation, where he is liken intermediate data structures to
trees, so many people call fusion as deforestation. He considered the following subset of functional
programs, called treeless terms, as the domain of his transformation.

Definition 3.2.1 (Treeless term).
A term of first-order language is treeless if all of its subterm is generated by the following grammar
and all of its variables appear only once.

t ::= v variable
| c t1 · · · tn constructor
| f v1 · · · vn function
| case v0 of p1 : t1 | · · · | pn : tn pattern-matching

p ::= c v1 · · · vn pattern

3.3. FOLD PROMOTION 21

(1) T [[v]] = v
(2) T [[c t1 · · · tn]] = c (T [[t1]]) · · · (T [[tn]])
(3) T [[f t1 · · · tn]] = T [[t[t1/v1, · · · , tn/vn]]]

where f is defined by f v1 · · · vn = t
(4) T [[case v of p1 → t1 | · · · | pn → tn]]

= case v of p1 → T [[t1]] | · · · | pn → T [[tn]]
(5) T [[case c t1 · · · tn of p1 → t1 | · · · | pn → tn]]

= T [[ti[t1/v1, · · · , tn/vn]]]
where pi = c v1 · · · vn

(6) T [[case f t1 · · · tn of p1 → t1 | · · · | pn → tn]]
= T [[case t[t1/v1, · · · , tn/vn] of p1 → t1 | · · · | pn → tn]]

where f is defined by f v1 · · · vn = t
(7) T [[case (case v of p1 → t1 | · · · | pn → tn) of p′1 → t′1 | · · · | p′m → t′m]]

= T [[case v of
p1 → (case t1 of p′1 → t′1 | · · · | p′m → t′m)

...
pn → (case tn of p′1 → t′1 | · · · | p′m → t′m)]]

where T [[t]] denotes the result of applying the transformation to a term t. We remember the
right-hand side term before applying rule (3) or rule (6), and we do folding if we find the
same term as remembered one while the transformation.

Figure 3.1. Transformation strategy of Wadler’s deforestation

where t, p, v, and c respectively denote a term, a pattern, a constructor, and a function.

He proved that composition of two treeless terms becomes a treeless term by his transformation
strategy shown in Figure 3.1. We show an example of transformation in Figure 3.2.

Characteristics of treeless form is that each argument of a function should be a variable. Therefore
a treeless term contains no intermediate data or accumulative data. This characteristics leads easiness
to fuse functions. Wadler’s deforestation strategy is not only deterministic, but also terminate and
eliminate all intermediate data structures without fail. But its drawback is expressiveness. We can
scarcely write even a small toy example in terms of treeless terms. Of cause we can write neither accu-
mulative programs nor circular programs, because we can express neither accumulation nor circularity
in terms of treeless terms.

3.3 Fold Promotion

Fold promotion theorem is a fusion law for structural recursions. It has appeared in the literature using
various notations [Bir89][MFP91][SF93]. We show it for structural recursions over lists as follows.

Theorem 3.3.1 (Fold promotion).

f e = e’

f (a ⊕ y) = a ⊗ (f y)

f ⋅ (foldr (⊕) e) ⇒ foldr (⊗) e’

22 CHAPTER 3. FUSION

x++y = case x of [] −> y

a:w −> a:(w++y)

appapp x y z = (x++y)++z

T [[appapp x y z]] ⇒ T [[(x++y)++z]] (3)(∗)
⇒ T [[case (x++y) of []−>z

a:w−>a:(w++z)]] (3)
⇒ T [[case (x of []−>y

a:w−>a:(w++y)) of []−>z

a:w−> a:(w++z)]] (6)
⇒ T [[case x of []−>(case y of []−>z

a:w−>a:(w++z))

a:w−>(case a:(w++y) of []−>z

a:w−>a:(w++z))]] (7)
⇒ T [[case x of []−>(case y of []−>z

a:w−>a:(w++z))

a:w−>a:((w++y)++z)]] (5)
⇒ T [[case x of []−>(case y of []−>z

a:w−>a:(w++z))

a:w−>a:(appapp w y z)]] (folding by (∗))
Now that the right-hand side term is treeless, we complete the transformation.

Figure 3.2. Example of Wadler’s deforestation

Fold promotion theorem is a simple but effective theorem. We can achieve chain reaction fu-
sions whenever we write a kernel function in terms of foldr, and especially it is effective for deriv-
ing efficient algorithms in systematic way. To use Theorem 3.3.1 is usually easy because structural
recursions are expressive as we have mentioned in Section 2.1.2, but its automation is a bit prob-
lematic because finding a proper (⊗) automatically is difficult and it requires higher-order pattern
matching [HL78][dMS01][Yok06]. It is a drawback of fold promotion theorem comparing to shortcut
deforestation, which we are going to introduce in Section 3.5.

Now we give an example of transformation based on fold promotion theorem. Think about a
program length (x++y), where length and (++) are defined in terms of foldr as follows.

length x = foldr (\a r−>1+r) 0 x

x++y = foldr (:) y x

We can fuse the composition above using Theorem 3.3.1 as follows.

length (x++y) ⇒ length (foldr (:) y x)

⇒ {- Fold promotion theorem:
length ((:) a r) ⇒ 1+(length r) -}

foldr (\a r−> 1+r) (length y) x

It certainly fuses the composition and eliminate the intermediate list passed between length and (++).
From a viewpoint of folding-unfolding methodology, fold promotion theorem gives a sufficient

condition to succeed in an effective folding. If we find a proper (⊗) satisfying an equation above,
then we can do a successful folding by (⊗). Theorem 3.3.1 can be extended to general structural
recursions [MFP91][SF93][HIT96] by giving a sufficient condition for each structural recursions to

3.3. FOLD PROMOTION 23

achieve a successful folding. Here we show fold promotion theorem for structural recursions on trees
for example. First we give an implementation of structural recursions on trees as follows.

foldTree g1 g2 (Leaf n) = g2 n

foldTree g1 g2 (Node l r) = g1 (foldTree g1 g2 l) (foldTree g1 g2 r)

The function foldTree expresses homomorphisms over trees as mentioned in Section 2.3.2. Now we
give a fusion law of foldTree as a relative of Theorem 3.3.1.

Theorem 3.3.2 (Fold Promotion on trees).

f (g2 n) = g2’ n

f (g1 l r) = g1’ (f l) (f r)

f ⋅ foldTree g1 g2 ⇒ foldTree g1’ g2’

Applying fold promotion theorem to accumulative functions makes disappointing results. Two
functions are fused into one, but intermediate data structures in accumulative arguments remain yet.
For example, think about the following accumulative function reverse.

reverse x = rev x []

where rev [] h = h

rev (a:x) h = rev x (a:h)

The auxiliary function of reverse is an instance of foldr as follows:

rev x = foldr (\a r h−>r(a:h)) (\h−>h) x

where rev is a higher-order foldr in the sense that it returns a function value. Now consider a fusion
problem length (reverse x) as an example. Theorem 3.3.1 conducts calculations as follows.

length (reverse x) ⇒ length (rev x [])

⇒ (length⋅) (foldr (\a r h−>r(a:h)) (\h−>h) x) []

⇒ {- Fold promotion theorem:
(length⋅) ((\a r h−>r(a:h)) a r) ⇒ (\h−>(length⋅r)(a:h))
(length⋅) (\h−>h) ⇒ length -}

foldr (\a r h−> r(a:h)) length x []

The result is as follows after unfolding foldr.

lengthreverse x = aux x []

where aux [] h = length h

aux (a:x) h = aux x (a:h)

This transformation does not improve its efficiency at all. The length in the base case of aux is still
waiting for the whole reversed list. As this result indicates, fold promotion theorem works only for
results and it is completely powerless for arguments.

Fold promotion theorem is also problematic to manipulate circular programs. It can do noting
about accumulative arguments. It is critical because accumulative arguments are essential for circular
programs.

24 CHAPTER 3. FUSION

3.4 Higher-Order Promotion

As we have seen in Section 3.3, fold promotion theorem cannot manipulate accumulative argument at
all. To solve this problem, Meijer [Mei92] proposes higher-order promotion theorem, which is a fusion
method for higher-order structural recursions. It can be polytypic as the same as Theorem 3.3.1, and
we write down its list case.

Theorem 3.4.1 (Higher-order promotion).

f ⋅ e = e’ ⋅ g

f ⋅ (a ⊕ y) = (a ⊗ r) ⋅ g if f⋅y = r⋅g

f ⋅ (foldr (⊕) e x) ⇒ (foldr (⊗) e’ x) ⋅ g

This theorem effectively achieves fusion for accumulative functions whenever we succeed to sat-
isfy this complicate condition. Recall that Theorem 3.3.1 cannot remove the intermediate list of
length (reverse x). Using Theorem 3.4.1, we can calculate as follows.

length (reverse x) ⇒ length ⋅ (foldr (\a r h−>r(a:h)) (\h−>h) x) []

⇒ {- Higher-order promotion theorem:
(length⋅y = r⋅length)→

length⋅((\a y h−>y(a:h)) a y) ⇒ (\h−>(length⋅y)(a:h))
⇒ (\h−>(r⋅length)(a:h))
⇒ (\h−>r(1+length h))

⇒ (\h−>r(1+h))⋅length)
length⋅(\h−>h) ⇒ (\h−>h)⋅length) -}

((foldr (\a r h−> r(1+h)) (\h−>h) x)⋅length) []

⇒ foldr (\a r h−> r(1+h)) (\h−>h) x 0

But it is still troublesome to manipulate a composition of accumulative functions. For example,
to achieve fusion of reverse (reverse x),

reverse (reverse x)

⇒ reverse ⋅ (foldr (\a r h−>r(a:h)) (\h−>h) x) []

⇒ {- Higher-order promotion theorem:
(reverse⋅y = r⋅reverse)→

reverse⋅((\a y h−>y(a:h)) a y) ⇒ (\h−>(reverse⋅y)(a:h))
⇒(\h−>(r⋅reverse)(a:h))
⇒(\h−>r(h++[a]))⋅reverse)

reverse ⋅ (\h−>h) ⇒ (\h−>h) ⋅ reverse) -}
((foldr (\a r h−> r(h++[a])) (\h−>h) x) ⋅ reverse) []

⇒ foldr (\a r h−> r(h++[a])) (\h−>h) x []

we need to use a lemma reverse (a:h) = reverse h ++ [a]. Without this lemma we cannot calculate
(\h−>(r⋅reverse)(a:h)) anymore, even though this lemma is not apparent from the program of
reverse. Theorem 3.4.1 is also troublesome to make a function g in the rule above, because there
are many choices of g and only appropriate choices make fusion successful. Conversely, if we choose a
proper g and prepare proper lemmas we can achieve fusion successfully. It is like a two-edged sword.
It is theoretical very powerful though, we should be careful in practical use of it.

Hu et al. [HIT99] tackled to make its calculation easy. They proposed to divide the process of
fusion into two steps. These two steps are expressed in terms of two theorems, named accumulation

3.5. SHORTCUT DEFORESTATION 25

promotion I and accumulation promotion II. The former is essentially the same as Theorem 3.3.1 of
higher-order case. We introduce the later one.

Theorem 3.4.2 (Accumulation promotion II).

e = e’ ⋅ g

(a ⊕ (r ⋅ g)) = (a ⊗ r) ⋅ g

(foldr (⊕) e x) ⇒ (foldr (⊗) e’ x) ⋅ g

Using Theorem 3.4.2, we can remove the intermediate data structure of lengthreverese that we
have derived in Section 3.3 as follows.
lengthreverse x ⇒ foldr (\a r h−> r(a:h)) length x []

⇒ {- Accumulation promotion II:
(\a r h−>(r⋅length)(a:h)) a r) ⇒ (\h−>r(1+length h))

⇒ (\h−>r(1+h))⋅length)
length ⇒ (\h−>h)⋅length) -}

((foldr (\a r h−> r(1+h)) (\h−>h) x)⋅length) []

⇒ foldr (\a r h−> r(1+h)) (\h−>h) x 0

On one hand, calculating 3.4.2 is easier than that of Theorem 3.4.1 because of fewer free parameters.
Moreover, combining Theorem 3.4.2 with accumulation fusion I, namely Theorem 3.3.1, we can derive
Theorem 3.4.1. On the other hand its manipulation power is inferior to Theorem 3.4.1 in general.

3.5 Shortcut Deforestation

Shortcut deforestation (or shortcut fusion) was proposed by Gill et al. [GLPJ93] for lists, and later
extended to be polytypic by Takano and Meijer [TM95]. We introduce it for lists.

Theorem 3.5.1 (Shortcut deforestation).
If a function g have the following polymorphic type:

g :: ∀β. (A → β → β) → β → β
then,

foldr k z (build g) =¿ g k z

where build is defined by build g = g (:) [].

Recall that foldr corresponds to structural recursions on lists, namely homomorphisms on the
algebraic structure of lists. Then foldr k z replaces all constructors produced by build g, i.e., it
replaces (:) and [] with k and z respectively. Now assume that all constructors are abstracted out by
lambda abstraction like a context, or data structures are expressed by Church encoding explicitly, such
as for example (1:(2:(3:[]))) becomes \c n−>(c 1(c 2(c 3 n))). Then just a simple substitution,
which is equivalent to an application in lambda calculus, gives a computation of foldr. It is the
main idea of shortcut deforestation. A function g is a context where constructors are abstracted
out, while build expresses a intermediate list by explicitly giving constructors to the context g. A
function foldr k z consumes the intermediate list produced by build. Then the computation of
foldr k z(build g) is equivalent to substituting an operations k and z to the context g. The type
annotation guarantees that constructors of g are abstracted out appropriately.

One of advantages of shortcut deforestation is simplicity of its rule. If we write programs in terms of
foldr/build and guarantee that they satisfy the type annotation, then we can achieve fusion by can-
celling corresponding foldr and build symbolically. Actually Gill [Gil96] implements Theorem 3.5.1

26 CHAPTER 3. FUSION

into GHC (Glasgow Haskell Compiler) [GHC] and confirms its effectiveness. Moreover, as similar
with Theorem 3.3.1, shortcut deforestation has its extensions to other data structures [TM95]. But its
drawback comes from a difficulty to derive proper foldr/build form programs automatically. Several
works have done about automatic derivation of foldr/build form [LS95][HIT96][Chi99][YHT05], but
we do not discuss their detail.

Now we show some transformation examples of shortcut deforestation. First we use the same
example of Section 3.3, namely length (x++y). We program length and (++) in terms of foldr/build
form as follows:

length x = foldr (\a r−>1+r) 0 x

x++y = build (\c n−>foldr c (foldr c n y) x)

where (\c n−>foldr c (foldr c n y) x) has the appropriate type. Then Theorem 3.5.1 enables us
to achieve fusion as follows.
length (x++y) ⇒ foldr (\a r−>1+r) 0 (build (\c n−>foldr c (foldr c n y) x))

⇒ {- Shortcut deforestation -}
(\c n−>foldr c (foldr c n y) x))(\a r−>1+r) 0

⇒ foldr (\a r−>1+r) (foldr (\a r−>1+r) 0 y) x)

Shortcut deforestation also works if the producer function of intermediate structures is either
accumulate or circular. We check it with an accumulative function reverse and a circular function
cycle as follows.

reverse x = build (\c n−>foldr (\a r h−>r(c a h)) (\h−>h) x n)

length (reverse x)

⇒ foldr (\a r−>1+r) 0 (build (\c n−>foldr (\a r h−>r(c a h)) (\h−>h) x n))

⇒ {- Shortcut deforestation -}
(\c n −> foldr (\a r h−>r(c a h)) (\h−>h) x n)(\a r−>1+r) 0

⇒ foldr (\a r h−>r(1+h)) (\h−>h) x 0

cycle x = build (\c n−>let r = foldr (\a r h−>c a (r h)) (\h−>h) x r in r)

length (cycle x)

⇒ foldr (\a r−>1+r) 0

(build (\c n−>let r = foldr (\a r h−>c a (r h)) (\h−>h) x r in r))

⇒ {- Shortcut deforestation -}
(\c n−>let r = foldr (\a r h−>c a (r h)) (\h−>h) x r in r)(\a r−>1+r) 0

⇒ let r = foldr (\a r h−>1+(r h)) (\h−>h) x r in r)

But if both the producer and consumer functions of intermediate structures are accumulative,
then shortcut deforestation results in a troublesome result. Consider a program reverse(reverse x),
which seems to be an identity function after fusion.

reverse (reverse x)

⇒ foldr (\a r h−>r(a:h)) (\h−>h)
(build (\c n−>foldr (\a r k−>r(c a k)) (\k−>k) x n)) []

⇒ {- Shortcut deforestation -}
(\c n−>foldr (\a r k−>r(c a k)) (\k−>k) x n)(\a r h−>r(a:h)) (\h−>h)[]

⇒ foldr (\a r k−>r(\h−>k(a:h))) (\k−>k) x (\h−>h) []

It is actually the following program after unfolding foldr.

3.6. TUPLING 27

revrev x = aux x (\h−>h) []

where aux [] k = k

aux (a:x) k = aux x (\h−>k(a:h))

This result differs from an expectation. Its auxiliary function makes a complex closure in spite of
an intermediate data structure, and it hiders to improve its efficiency. It is a drawback of shortcut
deforestation. Shortcut deforestation cannot completely manipulate accumulative functions. We need
another program transformation to remove higher-order accumulation and improve efficiency. We are
going to show that a method imported from the world of attribute grammars solves this problem in
Section 3.8.

3.6 Tupling

Tupling is a kind of fusion in a wide sense, which eliminate multiple traversals of a data structure. It
has appeared in the literature using various notations, for example [Bir84b][Fok89][Chi93][HITT97] are
found in the community of functional programming. Here we pick up mutu tupling theorem in [Fok89],
and write down for a very simple case.

Theorem 3.6.1 (Simple mutu tupling).

f1 = foldr k1 z1

f2 = foldr k2 z2

(f1 x,f2 x) ⇒ foldr (\a (r1,r2)−>(k1 a r1, k2 a r2)) (z1,z2) x

This theorem argues that we can compute results of f1 and f2 in the same time because they have
the same recursion structure. We can make it polytypic as similar with Theorem 3.3.1 because it only
cares about the recursion schemes.

Consider the average function in Section 3.1 for example. We programed it as follows:

average x = sum x / length x

where sum and length traverses over the same list x. Recall that sum and length are expressed in
terms of foldr as follows.

sum x = foldr (+) 0 x

length x = foldr (\a r−>1+r) 0 x

We apply Theorem 3.6.1 and eliminate multiple traversals as follows.

average x ⇒ uncurry (/) (foldr (+) 0 x, foldr (\a r−>1+r) 0 x)

⇒ {- Simple mutu tupling theorem -}
uncurry (/) (foldr (\a (r1,r2)−>(a+r1,1+r2)) (0,0) x)

⇒ let (r1,r2) = foldr (\a (r1,r2)−>(a+r1,1+r2)) (0,0) x in r1/r2

Then we get the following program after unfolding foldr.

average x = let (r1,r2) = ave x in r1 / r2

where ave [] = (0,0)

ave (a:x) = let (r1,r2) = ave x in (a+r1, 1+r2)

28 CHAPTER 3. FUSION

The multiple traversals over the input list is certainly disappeared.
Tupling is applicable for either accumulative functions or circular programs, because it only pays

attention to the structure of recursions, that is to say how to manipulate the recursion argument.
Besides, Bird [Bir84b] introduced circular programs as a result of tupling. We will show that tupling
certainly derives circular programs. We show a derivation of circular repmin program that we have
introduced in Section 2.3.2. First recall structural recursions on trees are expressed in terms of the
following foldTree function, as we have seen in Section 3.3:

foldTree g1 g2 (Leaf n) = g2 n

foldTree g1 g2 (Node l r) = g1 (foldTree g1 g2 l) (foldTree g1 g2 r)

And recall that we can implement a non-circular version of repmin, named transform, by two functions
tmin and replace. They are in fact structural recursions on trees. Then transform is as follows.

transform t = replace t (tmin t)

where replace t = foldTree (\l r h−> Node (l h) (r h)) (\n h−>Leaf h) t

tmin t = foldTree min id t

We can see that both replace and tmin have the same recursion structure. We use simple mutu
tupling theorem for structural recursions on trees to eliminate multiple traversals as follows.

transform x

⇒ apply (foldTree (\l r h−> Node (l h) (r h)) (\n h−>Leaf h) t, foldTree min id t)

where apply (a,b) = a b

⇒ {- Simple mutu tupling theorem -}
apply (foldTree (\(l1,l2) (r1,r2)−>(\h−>Node (l1 h) (r1 h), min l2 r2))

(\n−>(\h−>Leaf h,n)) t)

where apply (a,b) = a b

We get the following program after unfolding apply and foldTree.

transform t = let (r,m) = aux t in r m

where aux (Leaf n) = (\h−>Leaf h, n)

aux (Node l r) = let (l1,l2) = aux l

(r1,r2) = aux r

in (\h−>Node (l1 h) (r1 h), min l2 r2)

Finally, We remove higher-order results using an extension of η-expansion. Define a new auxiliary
function to give an extra argument to the first element of the result of aux as follows:

aux’ x h = let (r, m) = aux x in (r h, m)

then we get the following result by replacing aux with aux’.

transform t = let (r,m) = aux’ t m in r

where aux’ (Leaf n) h = (Leaf h, n)

aux’ (Node l r) h = let (l1,l2) = aux’ l h

(r1,r2) = aux’ r h

in (Node l1 r1, min l2 r2)

It is the circular function repmin that introduced by Bird.
In the framework of AGs, simple mutu tupling comes out apparently. It is just a merge of semantic

equations of two AGs. We confirm it throughout deriving the AG representation of circular repmin,

3.7. DESCRIPTIONAL COMPOSITION 29

and this derivation was introduced by Johnsson [Joh87]. First we prepare AG representations of tmin
and replace as follows:

tmin → Tree 〈tmin.result = Tree.m〉
Tree → Node Tree Tree 〈Tree0.m = min Tree1.m Tree2.m〉
Tree → Leaf n 〈Tree.m = n〉
replace → Tree 〈replace.result = Tree.r

Tree.n = replace.m (the second argument of replace)〉
Tree → Node Tree Tree 〈Tree0.r = Node Tree1.r Tree2.r

Tree1.n = Tree0.n
Tree2.n = Tree0.n〉

Tree → Leaf n 〈Tree.r = Leaf Tree .n〉
where n is an inherited attribute and m and r are synthesized attributes. Now that the underlying
CFG of tmin and replace is the same, we can compute both tmin and replace in one AG, which is
constructed by merging these two AGs into one as follows.

repmin → Tree 〈repmin.tmin = Tree.m
repmin.replace = Tree.r
Tree.n = replace.m (the second argument of replace)〉

Tree → Node Tree Tree 〈Tree0.m = min Tree1.m Tree2.m
Tree0.r = Node Tree1.r Tree2.r
Tree1.n = Tree0.n
Tree2.n = Tree0.n〉

Tree → Leaf n 〈Tree.m = n

Tree.r = Leaf Tree .n〉
This step corresponds to an application of Theorem 3.6.1. Finally we reform so that it actually
compute repmin. The second argument of replace, denoted by replace.m should be the same as
the result of tmin, denoted by repmin.tmin, so these attributes should be connected by a semantic
equation. And the result of repmin is the result of replace, namely repmin.replace. Then we get the
following AG:

repmin → Tree 〈repmin.result = Tree.r
Tree.n = Tree.m〉

Tree → Node Tree Tree 〈Tree0.m = min Tree1.m Tree2.m
Tree0.r = Node Tree1.r Tree2.r
Tree1.n = Tree0.n
Tree2.n = Tree0.n〉

Tree → Leaf n 〈Tree.m = n

Tree.r = Leaf Tree .n〉
It is certainly the AG representation of the circular function repmin.

3.7 Descriptional Composition

Think about compiler construction. To construct a compiler, we usually program a multi-pass ma-
nipulation or analysis over an intermediate representation of source programs. It is quite natural to
represent such a computation by compositions of AGs, because AGs are suitable to express computa-
tions over a structure such as an abstract syntax tree. Such a way of compiler construction is modular

30 CHAPTER 3. FUSION

but declines the efficiency of the resulting compiler, for the resulting compiler need to produce and
consume many intermediate representations. We need a fusion method for AGs to remove intermedi-
ate representations and improve efficiency. Descriptional composition, introduced by Ganzinger and
Giegerich [GG84], is a fusion method for AGs. Descriptional composition fuses a composition of two
AGs into one and remove the intermediate data structures.

Theorem 3.7.1 (Descriptional composition).
F1 = (G1, A1, D1) and F2 = (G2, A2, D2) are two AGs, satisfying the following conditions: (i) Exactly
one synthesized attribute ar, which is the result of F1, is associated to G1. The type of ar is the
same as the type of start symbol of G2. (ii) Each attributes that will be a subtree of ar appears
at most once in the right-hand side of semantic equations of D1. Then descriptional composition
of F1 with F2, which corresponds to the computation of F2 following F1, is the attribute grammar
F2 ◦ F1 = (G1, A, D), defined by the following rules.

1. A contains all attributes of A1 and D contains all types in D1 and D2.
2. Attributes in A1 that will be a subtree of ar are attributed by A2, therefore a part of attributes

of A1 are multiplied according to the number of A2. For example, an attribute a ∈ A1 being
subtree of ar, for each b ∈ A2, A contains all attributes denoted by a.b.

3. Multiplied attributes that come from synthesized attributes over synthesized attributes are syn-
thesized attributes, synthesized over inherited are inherited, inherited over synthesized are in-
herited, and inherited over inherited are synthesized.

4. For all b ∈ A2 and for all semantic equations X.ai = Y.aj in D1 where attributes ai and aj

will be a subtree of ar, D contains a semantic equation X.ai.b = Y.aj .b if b is associated with a
grammar symbol of G2 that has the same type as X.ai and Y.aj .

5. For all b ∈ A2 and for all semantic equations Xi0 .aj0 = Y Xi1 .aj1 Xi2 .aj2 · · ·Xik .ajk
in D1

where Y is a grammar symbol of G2, D contains a semantic equation for Xi0 .aj0 .b, if D2 has
a semantic equation for Zi0 .b associated with a production rule Zi0 → Y Zi1 Zi2 · · ·Zik . The
semantic equation for Xi0 .aj0 .b is obtained from the semantic equations for Zi0 .b, by renaming
Zi0 , Zi1 , . . . , Zik as Xi0 .aj0 , Xi1 .aj1 , . . . , Xik .ajk

.
6. D contains all semantic equations in D1 if it is not matched with the rule 4 and 5 above.

To see how descriptional composition work, we try to fuse reverse⋅reverse. Recall that the AG
representation of reverse is as follows:

reverse → List 〈reverse.result = List .r
List .h = []〉

List → a:List 〈List0.r = List1.r
List1.h = a:List0.h〉

List → [] 〈List .r = List .h〉
where we have two attributes h and r, and the type of the result is List . Note that the start symbol
of reverse is reverse and different from List , although descriptional composition requires that the
producer AG produces the intermediate data structure that is the same as the underlying CFG of the
consumer AG. This inconsistency is not essential, and it comes from the gap of AGs with functional
programming. We assume that there is a start symbol reverse in the root of List , and try to fuse
reverse⋅reverse.

First, we derive the top case of the result of descriptional composition. We regard the semantic
equation reverse.result = List .r as reverse.result = reverse List .r because of the reason discussed
above, and use the rule 5. Then we have two semantic equations as follows.

3.7. DESCRIPTIONAL COMPOSITION 31

reverse.result .result = List .r.r
List .r.h = []

We also use the rule 5 for List .h = [], and get the following semantic equation.

List .h.r = List .h.h

It is worth mentioning that List .h.h is a synthesized attribute of the left-hand side of production rule
then it should appear in the right-hand side of equations, and List .h.r is an inherited attribute of the
left-hand side of production rule then it should appear in the left-hand side of equations. Now we get
the top case of reverse⋅reverse.

reverse → List 〈reverse.result .result = List .r.r
List .r.h = []

List .h.r = List .h.h〉

Next, we will make the step case. For List0.r = List1.r, we use the rule 4.

List0.r.r = List1.r.r
List1.r.h = List0.r.h

As before, note whether the attribute is synthesized or inherited and swaps the left-hand side and
right-hand side of equations if it is necessary. For List1.h = a:List0.h, we use the rule 5.

List1.h.r = List0.h.r
List0.h.h = a:List1.h.h

We similarly do for the base case, and finally we get the following AG.

reverse → List 〈reverse.result .result = List .r.r
List .r.h = []

List .h.r = List .h.h〉
List → a:List 〈List0.r.r = List1.r.r

List1.r.h = List0.r.h
List1.h.r = List0.h.r
List0.h.h = a:List1.h.h〉

List → [] 〈List .r.r = List .h.r
List .h.h = List .r.h〉

This AG has many unnecessary carrying of value and apparently different from the computation of the
identity function, but it actually describes a computation of reverse⋅reverse. Note that in the top
case we have a circularity expressed by a semantic equation List .h.r = List .h.h, where an inherited
attribute h.r depends on the synthesized attribute h.h of the same grammar symbol. It naturally
comes from descriptional composition.

Descriptional composition is effective in the sense that it works even if both of the composed
functions are accumulative. As we have explained, other fusion methods do not have this prop-
erty. Descriptional composition is translated to agree with functional programming by many re-
searchers [Küh98][Küh99][CDPR99][Voi04].

Descriptional composition is also applicable even if the AGs have circularities, namely dependencies
from inherited attributes to synthesized attributes of the same grammar symbol. Because descrip-
tional composition treats synthesized attributes and inherited attributes symmetrically, we have no
reason to be troubled with the dependency from synthesized attributes to inherited attributes, namely

32 CHAPTER 3. FUSION

circularity. It is quite good though, we cannot apply descriptional composition to the following cycle

function:
cycle → List 〈cycle.result = List .r

List .h = List .r〉
List → a:List 〈List1.h = List0.h

List0.r = a:List1.r〉
List → [] 〈List .r = List .h〉

because List .r is used two times in the right-hand side of the semantic equations in the top case and
violate the precondition of descriptional composition.

3.8 Shortcut Deforestation based on Descriptional Composition

Descriptional composition is similar with shortcut deforestation. Both methods consist of the following
two steps. First we analyze which constructor will be consumed by the next structural recursion,
and after that we substitute constructors by the operations according to the consumer structural
recursion. But results are different. Shortcut deforestation to a composition of accumulative functions
produce involved closures, though descriptional composition gives an AG whose types of attributes are
primitive values. This observation implicates that we can remove higher-order closures of the result of
shortcut deforestation by using the idea of descriptional composition. This implication is formalized
by Nishimura [Nis03] [Nis04].

Here we show the result of shortcut deforestation of reverse⋅reverse again.

revrev x = aux x (\h−>h) []

where aux [] k = k

aux (a:x) k = aux x (\h−>k(a:h))
In auxiliary function aux we have a higher-order accumulative arguments and higher-order results.
Recall the AG representation of reverse⋅reverse. The accumulative argument corresponds to the
inherited attribute List .h, and the result corresponds to the synthesized attribute List .r . List .h and
List .r are also attributed by attributes r and h, which respectively correspond to the arguments and
the results of the closure. The AG representation of reverse⋅reverse indicates that what we should
do to achieve higher-order removal is to give new arguments and results to the recursive function
aux, where extra arguments and results correspond to the multiplied attributes such as h.r, h.h,
etc. First think about the closure in the position of arguments (=inherited attribute). It takes an
argument (=inherited attribute), then we need to introduce an extra result (=synthesized attributes),
which corresponds to the attribute h.h, because inherited attributes over inherited attributes makes
synthesised attributes. And we also need to introduce an extra argument corresponding to the attribute
h.r. As for results it is similar. We need to introduce an extra argument corresponding to inherited
attribute r.h and an extra result corresponding to synthesized attributes r.r. Now we summarize this
procedure as follows.

Procedure 3.8.1 (Nishimura’s higher-order removal).
Nishimura’s higher-order removal is organized by the following six steps:

1. For each accumulative argument that is made up of a closure, make a new result that corresponds
to its argument.

2. For each accumulative argument that is made up of a closure, make a new argument that corre-
sponds to its result.

3. Remove the all accumulative made up of closures.

3.8. SHORTCUT DEFORESTATION BASED ON DESCRIPTIONAL COMPOSITION 33

4. For each result that is made up of a closure, make a new argument that corresponds to its
argument.

5. For each result that is made up of a closure, make a new result that corresponds to its result.
6. Remove the all results made up of a closure.

Applying Procedure 3.8.1 to the revrev above, we get the following program.

revrev2 x = let (rr,hh) = aux x ([],hh) in rr

where aux [] (rh,hr) = (hr,rh)

aux (a:x) (rh,hr) = let (rr,hh) = aux x (rh,hr)

in (rr,a:hh)

This is a first-order circular program for reverse⋅reverse and certainly corresponds to the result of
descriptional composition of reverse⋅reverse.

The effectiveness of Nishimura’s method is basically the same as that of descriptional composition,
because both results are the same. If composed functions satisfy the precondition of descriptional
composition it successfully produces first-order programs, even if the functions are either accumulative
or circular.

Chapter 4

IO Swapping

IO swapping is a new transformation to change the view of recursive functions through literally
swapping their inputs (arguments and call-time computations) and outputs (results and return-time
computations). The rule of IO swapping is so general that almost every linear recursive function is
in its domain, and it is also extensible toward non-linear recursive functions. Moreover, it has some
good properties that is useful for program manipulations.

4.1 IO Swapping

Before going into the general framework, we illustrate the basic idea of the proposed technique using
a typical function foldl. After that, we give a general rule that can manipulate almost every linear
recursive function of our interest.

Corollary 4.1.1 (IO swapping for foldl).
The functions foldl and foldl2 defined below are equivalent.

foldl f e [] = e

foldl f e (a:x) = foldl f (f e a) x

foldl2 f e x = let ([],r) = foldl’ x in r

where foldl’ [] = (x,e)

foldl’ (b:y) = let (a:x’,r’) = foldl’ y

in (x’,f r’ a)

Proof. It is direct consequence of Corollary 4.4.1, which we are going to introduce in Section 4.4.
Applying Corollary 4.4.1 to foldl and removing unnecessary variables derives foldl2.

It is worth noting how the result is computed using the function argument f. While f is applied
to the accumulative argument in the function foldl, it comes to the surface to compute the result
of foldl2. This is because IO swapping is a rule that swaps the call-time computations and the
return-time computations of the original recursive function.

Figure 4.1 illustrates the computation processes of foldl and foldl2. It shows that turning over
the figure of foldl looks almost the same figure as foldl2. This is the point of IO swapping. To
understand what turning over the figure means, recall the role of arguments and results of recursive
functions. The role of arguments in a recursive function is to compute and pass values from shallower
parts of the recursion to deeper parts; the role of the results is the opposite, namely passing values
from the deeper to the shallower. This implies that, if we make this tower of the recursion upside

35

36 CHAPTER 4. IO SWAPPING

[]
?

[3]¾3 ?

[2,3]¾2 ?

[1,2,3]¾1

[1,2,3]

?

e

?
f e 1

?
f(f e 1)2

?
f(f(f e 1)2)3

?

6

Return
values

Arguments

'

&

$

%
foldl

[]
6

[3]
6

[2,3]
6

[1,2,3]
6

[1,2,3] []
?

[3]¾1 ?

[2,3]¾2 ?

[1,2,3]¾3

r

f(f(f e 1)2)3

6

f(f e 1)2

6

f e 1

6

e

6

Results Arguments

'

&

$

%
foldl2

Figure 4.1. The models of computation processes of foldl and foldl2

down, we need to change the position of computation with arguments and results for keeping the
whole results of computation. This is what IO swapping does. In Figure 4.1, the shallower and deeper
parts correspond to the upper and lower part, respectively. The computation by f proceeds from the
upper (shallower) part to the lower (deeper) part in foldl and from the lower (deeper) part to the
upper (shallower) part in foldl2. These facts are reflected to the swapping of call-time computations
and return-time computations.

The viewpoint of AGs helps us to understand it. We have a tree from the underlying CFG and
synthesized and inherited attributes. Recall that synthesized attributes traversal over the tree from
bottom to top, and inherited attributes traversal from top to bottom. It implies that if we want to
swap synthesized attributes and inherited attributes, turning over the tree is proper. This observation
corresponds completely to the functional-programming-based explanation above. Now the problem is
how to turn over the tree. Here usual AGs get a stick. We have no way to manipulate the tree namely
the underlying CFG. Now we lift up the view to relational AGs, so that we can manipulate the tree.
The relational-AG-based representation of foldl is as follows:

foldl → foldl ′ 〈foldl .result = foldl ′.r
foldl ′.x = x

foldl ′.h = e〉
foldl ′ → foldl ′ 〈foldl ′0.r = foldl ′1.r

a:x’ = foldl ′0.x
foldl ′1.x = x’

foldl ′1.h = f foldl ′0.h a〉
foldl ′ → ε 〈[] = foldl ′.x

foldl ′.r = foldl ′.h〉

where f, e, and x denote the initial arguments of foldl. Here production rules have little meaning
because their productions completely depend on the semantic equations. The important thing for
describing the computation of foldl is the sequence of logical relations that are expressed in terms
of the semantic equations. In other words, any tree is proper if it can express the sequence of logical
relations appropriately. This observation leads that the following relational AG is a proper one to

4.1. IO SWAPPING 37

express the computation of foldl:

foldl ′ → foldl 〈foldl .result = foldl ′.r
foldl ′.x = x

foldl ′.h = e〉
foldl ′ → foldl ′ 〈foldl ′1.r = foldl ′0.r

a:x’ = foldl ′1.x
foldl ′0.x = x’

foldl ′0.h = f foldl ′1.h a〉
ε → foldl ′ 〈[] = foldl ′.x

foldl ′.r = foldl ′.h〉

where we flip left-hand sides and right-hand sides of the production rules, which corresponds to turning
over the whole tree. In this AG ε does not denote an empty sequence of grammar symbols anymore,
but stands for the start symbol. Synthesized attributes and inherited attributes are also flipped.

Next we will translate it to a recursive function of functional programming. Here we should note
two things: One is about how to taking out the result of the whole recursion. A recursive function
should serve its result of the whole recursion from the top of the recursion, while in the relational AG
above foldl .result appears at the leaf of the tree. This problem is easily solved by taking out the value of
the attribute r from the top case as the result of the whole recursion, because the attribute r brings the
same value throughout the tree and that is exactly the result of the whole recursion. Another problem
is about the structure of the recursion. The relational AG above is not a structural recursion anymore.
Furthermore it has no inherited attribute that expresses the recursion structure, while the synthesized
attribute x expresses the structure of the tree. Recursive functions in functional programming must
determine their recursion structure by their arguments for deterministic computation. Therefore we
need to introduce an extra recursion argument. We use the input list x and construct recursion
structure in the same manner with foldl, because the recursion structure of the relational AG above
is the same with foldl. Finally we get the definition of foldl2 in Corollary 4.1.1

The idea of Corollary 4.1.1 can be generalized so that it can be applied to almost every linear
recursive function, including circular programs.

Theorem 4.1.2 (IO swapping).
Assume that g0, g1, g2, and g3 are given functions. Then the following two functions f1 and f2 are
equivalent.

f1 x h0 = let r = f1’ (x, g0 r h0) in r

where

f1’ (x’,h) = if p x’ then g1 x’ h

else let r = f1’ (k x’, g2 x’ r h)

in g3 x’ r h

f2 x h0 = let ((x’,h),r’) = f2’ (x, g1 x’ h) in r’

where

f2’ (y,r) = if p y then ((x, g0 r h0),r)

else let ((x’,h),r’) = f2’ (k y, g3 x’ r h)

in ((k x’, g2 x’ r h),r’)

We are going to give its proof in Section 4.2.

38 CHAPTER 4. IO SWAPPING

f1’

f1’

f1’

f1’

'

&

$

%
f1

- sg1

6sk

?

PPPq sg2

?

-- sg3
6

¾? ?

6sk

?

PPPq sg2

?

-- sg3
6

¾

sk

?

PPPq sg2

?

-- sg3

6

¾

sg0

?

¾

?

x

?

h0 r

f2’

f2’

f2’

f2’

'

&

$

%
f2

6

-g0 s
6h0

6 6

x

sg3

?

- s g2
¾¾

6
s

PPPi k
6

sk

?

6

?

6 6

?

sg3

?

- s g2
¾¾

6

s
PPPi k

6

sk
?

sg3

?

- s g2
¾¾

6

s
PPPi k

6

sk

?

sg1

?

¾

?

xr’

Figure 4.2. The computation processes of f1 and f2 in Theorem 4.1.2

Theorem 4.1.2 swaps the call-time computations and the return-time computations of the auxiliary
function. In the definition of the function f1, g3 performs the return-time computation, but in the
definition of the function f2 it does the call-time computation. In contrast, g2 manages the call-time
computation in the function f1, but under f2 it does the return-time computation.

The idea of Theorem 4.1.2 is the same as Corollary 4.1.1—the function f2 uses its first argument
only for constructing the recursion structure, then performs the same computation of f1 in the IO-
swapped manner, and finally returns the result of the whole recursion from the bottom of the recursion
as the second element of the result, denoted by r’. Figure 4.2 shows the computation process of f1
and f2. We can easily see that turning over the figure of f1 gives almost the same figure of f2.

4.2 The Proof of IO Swapping

In this section we give a proof of Theorem 4.1.2. To prove it, we assume that all equations have a
unique solution and we can compute it with a deterministic and finite computation. This is because we
need to shift to the relational framework to prove Theorem 4.1.2. We need to assume that semantic
equations in the IO-swapped relational AG are resolved appropriately. In functional programming
uniqueness of the solution is no problem because a function has only one solution, but computability
is fully dependent on operational semantics. For example, if we treat a strict functional language, we
cannot use circular programs and Theorem 4.1.2 is apparently incorrect. That is to say, on one hand
the power of IO swapping is restricted by the operational semantics so that its range and domain should
contain only the functions that satisfy the assumption above. On the other hand, if the assumption
is satisfied, IO swapping is correct in any operational semantics, such as lazy evaluation, many times
sweep over data structures, back tracking, and so on.

Before starting the proof, we prepare some definitions and lemmas that we are going to use to
prove the theorem.

4.2. THE PROOF OF IO SWAPPING 39

Definition 4.2.1 (Computation of each recursion).
Inputs of a recursion are both its arguments and its next recursion’s results. Outputs of a recursion
are both its results and its next recursion’s arguments. Computation of a recursion is to compute its
outputs from its inputs. We call that computation of a recursion A and a recursion B is the same if
the inputs and the outputs of A are the same as the inputs and the outputs of B respectively.

The definition of inputs and outputs of a recursion become clearer by recalling the framework
of AGs (not relational AGs but usual AGs). Outputs of a recursion are attributes that are in the
left-hand side of semantic equations and computed by them. Inputs of a recursion are attributes that
are in the right-hand side of semantic equations and passed from other part of the tree.

Next we give some lemmas.

Lemma 4.2.2.
The second result of f2’ (denoted by r’) is constant during the whole recursions.

Proof. It is obvious from the definition of f2.

Lemma 4.2.3.
The depth of recursions of f1 and f2 are the same if the input arguments of these functions are the
same.

Proof. It is obvious from the definition of f1 and f2.

The next lemma is the point of IO swapping. Here “0-th recursive call”, which corresponds to
the top case in the world of AGs, means the outside of the recursion of the auxiliary function, “first
recursive call” means the first call of the auxiliary function, and so on. n (n ≥ 1) denotes the maximum
depth of recursions, where notice that f1 and f2 have same maximum depth of the recursion, from
Lemma 4.2.3.

Lemma 4.2.4.
For all k such that 0 ≤ k ≤ n, the k-th recursion of f1 does the same computation as the (n− k)-th
recursion of f2, except for the first element of argument and the second element of result of f2, denoted
by y and r’ respectively.

Proof. We introduce some notations for arguments and results of recursions performed by f1 and f1’.
We write the result of their 0-th recursion as r0, the recursion argument of their 0-th recursion as x0,
the accumulative argument of their 0-th recursion as h0, the result of their first recursion as r1, and
so on. Note that f1 and f1’ have their unique solutions from the assumption. Now we will show that
they can be one solution of f2 and f2’ with induction.

First think about the case where k is 0. The n-th recursion of f2 is the bottom of the recursive
call of f2. Here we assume that the recursion takes r1 as its second element of the argument. Then it
returns x and g0 r1 h0, which are the same as x1 and h1 respectively. This computation is the same
as the 0-th recursion of f1.

Next consider the case of k = m + 1 such that 0 < m < n− 1, and for all 0 < i ≤ m the (n− i)-th
recursion satisfies the hypothesis. Here assume that the (n − m − 1)-th recursion of f2 takes rm+2

as its second element of the argument. From the hypothesis it also takes (xm+1,hm+1) as results of
the next recursion, namely the (n−m)-th recursion. It passes g3 xm+1 rm+2 hm+1 as the argument
of the next recursion, which is the same as rm+1. It returns (k xm+1,g2 xm+1 rm+2 hm+1) as its
result, which is the same as (xm+2,hm+2). Note that this computation is the same as the (m + 1)-th
recursion of f1 and the hypothesis holds.

40 CHAPTER 4. IO SWAPPING

Finally we reach the case where k = n. From the hypothesis the n-th recursion of f2 takes (xn,hn)
as results of the next recursion. It passes g1 xn hn as the argument of the next recursion, which is
the same as rn. This computation is the same as the n-th computation of f1.

As we have shown, {r0,. . .,rn}, {x0,. . .,xn}, and {h0,. . .,hn} organize one solution of f2 and
f2’, because they satisfy all equation without any conflict. From the assumption, f2 and f2’ have
only one solution. Then the one and only solution of f2 and f2’ is the solution that we have derived,
and it satisfies the proposition.

Now we are ready to prove Theorem 4.1.2.

Proof. Here we prove Theorem 4.1.2. It is direct consequence of Lemma 4.2.2 and Lemma 4.2.4.
Assume that maximum depth of the recursion is n. The result of the first recursion of f1’ is the
same as the second element of the argument of the nth recursion of f2’, because of the Lemma 4.2.4.
That value is passed as the second result of f2’, and it is the same as the second result of the first
recursion of f2’, because of the Lemma 4.2.2. Therefore the result of the whole computation of the
f2 is equivalent to that of f1.

4.3 Characteristics of IO Swapping

IO swapping has some good properties. One is that it is self-inverse in the sense that applying IO
swapping twice leads to the original function after removing unnecessary variables.

Theorem 4.3.1 (Self-inverseness of IO swapping).
T [[f]] denotes the function f after applying IO swapping. Then,

T [[T [[f]]]] = f

provided that the function f is in the domain of Theorem 4.1.2.

Proof. Without loss of generality, we can assume that f has the following form.

f x h0 = let r = f’ (x, g0 r h0) in r

where

f’ (x’,h) = if p x’ then g1 x’ h

else let r = f’ (k x’, g2 x’ r h)

in g3 x’ r h

We obtain g = T [[T [[f]]]] as follows.

g x h0 = let ((y,r),r’) = f’ (x,((x, g0 r h0),r)) in r’

where

f’ (y,((x’,h),r’)) = if p y then ((x,g1 x’ h),r’)

else let ((y’, r),r’’) = f’ (k y,((k x’, g2 x’ r h),r’))

in ((k y’,g3 x’ r h),r’’)

During the recursive call, the first argument of f’ (denoted by the variable y) is always the same as
the second argument (x), and the fourth argument (r’) and the third result (r’’) do not change.
Eliminating these unnecessary variables, we get the definition of g that is the same as that of f.

4.4. IO SWAPPING ON STRUCTURAL RECURSIONS OVER LISTS 41

Theorem 4.3.1 indicates that, when the effect of IO swapping becomes needless after some program
manipulations, we can remove the effect of IO swapping by applying it one more time. It is natural
because IO swapping is a rule that swaps call-time computations and return-time computations. In
other words, IO swapping does nothing except swapping of them.

Another is about manipulability. If we have a transformation applicable to all functions in the
domain of IO swapping, it is also applicable to any results of IO swapping. This comes from that the
domain of IO swapping is equivalent to the range of IO swapping.

Theorem 4.3.2 (Self-morphismness of IO swapping).
The domain and range of IO swapping are the same.

Proof. From Theorem 4.3.1, IO swapping should be a bijective morphism. And as also seen in the
proof of Theorem 4.3.1, the range of IO swapping is a subset of its domain. Therefore its domain and
range should be equal.

Theorem4.3.2 indicates that IO swapping is manipulablity preserving in the sense that IO swapping
keeps the structure of the recursion. It is good for combining IO swapping with other program
transformation method because a large number of program transformations over recursive functions
transform them by recognizing their recursion structure.

Next we remark on infinite structures. If a function with certain inputs recurs infinitely, the IO-
swapped function with the same inputs also does an infinite recursion and does not return any value.
This is because we cannot construct a proper recursion structure. Natural though it is, we should be
careful about treatments of infinite structures with lazy evaluation. For example, consider the identity
function on lists.

idL (a:x) = a:idL x

idL [] = []

If we give an infinite list as an input of idL, idL starts infinite computation and tries to compute an
infinite list. Lazy evaluation enables idL to produce its results, for example we can take the head from
it. On the other hand, the IO-swapped idL returns nothing with an infinite length of input. As this
example illustrates, IO swapping does not conserve the meaning of functions in general, if the original
function is non-strict and recurs infinitely. Note that there is no problem to apply IO swapping twice
to functions which recur infinitely thanks to Theorem 4.3.1.

Finally, we give a short remark about computational complexities. Since what IO swapping man-
ages is just a flipping, the leading orders of both time and space complexity of an IO-swapped function
is equivalent to the original function. To be precise, complexities are different just a portion of two
variables, one is the recursion argument of f2 and another is the second element of the result of f2
that bring the result of the whole recursion to the top of the recursion.

4.4 IO Swapping on Structural Recursions over Lists

Theorem 4.1.2 is very powerful. But it is sometimes too general to be applied to concrete programs. It
is worth making to formalize a rule for structural recursions to discuss combination of other program
manipulation methods with IO swapping, because they are suitable for program manipulation as
mentioned in Chapter 3.

Corollary 4.4.1 (IO swapping for structural recurisions on lists).
Assume that g0, g1, g2, and g3 are given functions. Then the following two functions f1 and f2 are
equivalent.

42 CHAPTER 4. IO SWAPPING

f1 x h0 = let r = f1’ x (g0 r h0) in r

where f1’ [] h = g1 h

f1’ (a:x’) h = let r = f1’ x’ (g2 a r h)

in g3 a r h

f2 x h0 = let ([],h,r’) = f2’ x (g1 h) in r’

where f2’ [] r = (x, g0 r h0, r)

f2’ (b:y) r = let (a:x’,h,r’) = f2’ y (g3 a r h)

in (x’, g2 a r h, r’)

Proof. It is direct consequence of Theorem 4.1.2.

Corollary 4.4.1 describes the IO swapping rule for list iterating functions with accumulative argu-
ments. Recall that such functions are essentially structural recursions, because we can hide accumu-
lative arguments by using higher-order results, as mentioned in Section 2.3.1.

The most significant point about Corollary 4.4.1 is that it enjoys the same properties described by
Theorems 4.3.1 and 4.3.2. Applying IO swapping to structural recursions over lists results in structural
recursions over lists and elimination of the effect of IO swapping is achieved by applying IO swapping
once more. Now Corollary 4.4.1 therefore enables us to combine IO swapping with other techniques
of program manipulation, once the concerned functions are defined as structural recursions. We will
confirm its effectiveness in the following Chapters 5 and 6 with concrete examples.

It is worth mentioning about the relationship between Corollary 4.1.1 and Corollary 4.4.1. Corol-
lary 4.1.1 is a special instance of Corollary 4.4.1 in the sense that functions in the domain and range of
Corollary 4.1.1 have no circularity. Circularity is vital for IO swapping, because IO swapping basically
makes circular programs from accumulative programs through flipping the direction of dependency
between arguments and results. But in the case of Corollary 4.1.1, there appears no circularity be-
cause foldl is tail-recursive, in which the dependency from arguments to results is unnecessary. This
absence of circularity makes Corollary 4.1.1 applicable under strict languages while not the general
IO swapping.

4.5 IO Swapping on Trees

We have introduced IO swapping for linear recursions. The idea of IO swapping is turning over the
recursion structure and it is not suitable to non-linear recursions. Applying IO swapping to non-linear
recursions, we should “linearize” the concerned recursion. Here we introduce two ways.

One is strictly “linearize” the recursion. We make use of the fact (in compiler construction)
that the stack frame, which has linear structure, generally captures the order and circumstances of
function calls. Making explicit use of the stack frame enables us to linearizing non-linear recursions.
For example, we can formalize a rule for structural recursions on trees as follows.

Theorem 4.5.1 (Liniarization of strucutual recursions on trees).
The following two functions are equivalent.

f1 gl gr hn hl e t = f1’ t e

where

f1’ (Node l r) h = let lr = f1’ l (gl lr rr h)

rr = f1’ r (gr lr rr h)

in hn lr rr h

f1’ (Leaf n) h = hl n h

4.5. IO SWAPPING ON TREES 43

f2 gl gr hn hl e t = let [r] = f2’ [t] [e] in r

where

f2’ (Node l r:ts) (h:hs) = let lh = gl lr rr h

rh = gr lr rr h

(lr:rr:rs) = f2’ (l:r:ts) (lh:rh:hs)

in hn lr rr h:rs

f2’ (Leaf n:ts) (h:hs) = (hl n h):(f2’ ts hs)

f2’ [] hs = []

Proof. We will prove it by induction with a hypothesis: head (f2’ (t0:ts) (h0:hs)) = f1’ t0 h0

and (f2’ (t0:t1:ts) (h0:h1:hs)) !! 1 = f1’ t1 h1. Note that this hypothesis is sufficient to prove
this theorem.

If the height of t0 and t1 is 1, that is they are just a Leaf, then:

f2’ (Leaf n0 : ts) (h0:hs) ⇒ hl n0 h0 : f2’ ts hs

f2’ (Leaf n0 : Leaf n1 : ts) (h0:hs) ⇒ hl n0 h0 : hl n1 h1 : f2’ ts hs

the hypothesis holds.
Assume that the hypothesis holds if the height of t is less than k. If the height of t0 is k, then:

f2’ (Node l r : ts) (h0:hs)

⇒ let lh = gl lr rr h0

rh = gr lr rr h0

(lr:rr:rs) = f2’ (l:r:ts) (lh:rh:hs)

in hn lr rr h0:rs

⇒ {- From hypothesis: Note that the height of l and r is less than k -}
hn (f1’ l (gl lr rr h0)) (f1’ r (gl lr rr h0)) h0: rs

f2’ (t0 : Node l r : ts) (h0:h1:hs)

⇒ {- From the result above -}
⇒ let lh = gl lr rr h1

rh = gr lr rr h1

(lr:rr:rs) = f2’ (l:r:ts) (lh:rh:hs)

in f1’ t0 h0 : hn lr rr h1:rs

⇒ {- From hypothesis: Note that the height of l and r is less than k -}
hn (f1’ l (gl lr rr h1)) (f1’ r (gl lr rr h1)) h1: rs

the hypothesis holds.

Starting from the function f1, first we determine the order of iteration in left-most depth-first
fashion. To express stack frame explicitly, we rewrite the recursion structure such that it would push
the arguments to the stack in the same order as the iteration and pop the results from the stack. Then
we get the function f2. Because the recursion structure of the function f2 is linear, we can apply
Theorem 4.1.2. Using Theorem 4.5.1 with Theorem 4.1.2 we can actually swap call-time computations
and return-time computations, because Theorem 4.5.1 does not change whether the computation is
managed in call-time or return-time. Theoretically it is good, though, it is quite bad for practical use.
It terribly breaks the recursion structure and there is little hope of combining it with other program
transformations. We need more manipulable results.

Another way is to apply IO swapping to each spine of its structure of the recursion. For example,
consider structural recursions on trees again. We regard it as a linear-recursion by considering that

44 CHAPTER 4. IO SWAPPING

the recursive call for the right subtree is iterated by another recursive function. This idea is formalized
as follows.

Theorem 4.5.2 (IO swapping for structual recursions on trees).
For all gl, gr, hn, hl, e, and t, the following two functions are equivalent.

f1 gl gr hn hl e t = f1’ t e

where f1’ (Leaf n) h = hl n h

f1’ (Node lt rt) h = let lr = f1’ lt (gl lr rr h)

rr = f1’ rt (gr lr rr h)

in hn lr rr h

f2 gl gr hn hl e t = let (Leaf n, h, r’) = f2’ t (hl n h) in r’

where f2’ (Leaf n) r = (t, e, r)

f2’ (Node lt’ rt’) lr = let (Node lt rt, h, r’) = f2’ lt’ (hn lr rr h)

rr = f2 gl gr hn hl (gr lr rr h) rt

in (lt, gl lr rr h, r’)

Proof. We prove it by induction. If the height of t is 1, then

f2 gl gr hn hl e (Leaf n)

⇒ let (Leaf n’, h, r’) = f2’ (Leaf n) (hl n’ h) in r’

⇒ let (Leaf n’, h, r’) = (Leaf n, e, hl n’ h) in r’

⇒ hl n e

the proposition holds.
Assume that for all t whose height is less than k the proposition holds. If the height of t is k, then

f1 gl gr hn hl e t

⇒ f1’ t e

⇒ {- IO swapping (Theorem 4.1.2) -}
let (Leaf n, h, r’) = f2’’ t (hl n h) in r’

where f2’’ (Leaf n) r = (t, e, r)

f2’’ (Node lt’ rt’) lr = let (Node lt rt, h, r’) = f2’’ lt’ (hn lr rr h)

rr = f1 gl gr hn hl (gr lr rr h) rt

in (lt, gl lr rr h, r’)

⇒ {- From the hypothesis: Note that the height of rt is less than k -}
let (Leaf n, h, r’) = f2’’ t (hl n h) in r’

where f2’’ (Leaf n) r = (t, e, r)

f2’’ (Node lt’ rt’) lr = let (Node lt rt, h, r’) = f2’’ lt’ (hn lr rr h)

rr = f2 gl gr hn hl (gr lr rr h) rt

in (lt, gl lr rr h, r’)

the proposition holds.

As similar with the case of Theorem 4.5.1, Theorem 4.5.2 certainly swaps arguments and results
but it does not preserve the recursion structure. f2’ is not a structural recursion on trees anymore.
Nevertheless, Theorem 4.5.2 is better than Theorem 4.5.1 for combining other program transforma-
tions. We will confirm its effect in Section 6.5.

Chapter 5

Play with TABA Using IO Swapping

In this chapter, we demonstrate derivations and manipulations of There And Back Again programs.
The goal is to confirm how IO swapping works and how IO swapping is combined with other program
transformations through non-trivial examples.

5.1 There And Back Again

There And Back Again (in short TABA), proposed by Danvy and Goldberg [DG02] is a program
pattern where a recursive function traverses over its results as if they are recursion arguments. A
typical example is a symbolic convolution function cnv, which takes two lists [a1, a2, . . . , an] and
[b1, b2, . . . , bn], and computes their symbolic convolution, i.e., [(a1, bn), (a2, bn−1), . . . , (an, b1)]. They
show the following TABA-pattern cnv.

cnv x y = let ([],r) = walk x in r

where walk [] = (y,[])

walk (a:x) = let (b:y,r) = walk x

in (y, (a,b):r)

This program uses an unusual auxiliary function walk. When the input x is empty, walk uses the
input y directly as a result, and this result is traversed together while x is traversed. Figure 5.1 shows
the computation model of cnv.

Our objective is to show how to derive such programs. We can see that cnv yields to the following
specification.

cnv x y = zip x (reverse y)

It seems that it is just a fusion problem. But no existing fusion method derives the program above, as
we will discuss in Section 5.5. To derive TABA programs we use IO swapping, because IO swapping
and TABA programs are very closely related. On one hand, IO swapping derives TABA programs.
IO swapping brings an iteration over arguments to that of results because it swaps the call-time
computation and the return-time computations. Then usual programs become TABA programs. On
the other hand, IO swapping itself is an application of TABA programs. The TABA pattern is
essentially necessary for expressing IO swapping rule.

We will carry out our derivation in compositional way: We first prepare a small TABA program
by IO swapping, and afterwards we fuse functions into the small TABA function and make it a larger
TABA function. We achieve fusions by fold promotion theorem (Theorem 3.3.1) and simple mutu
tupling (Theorem 3.6.1), because these are enough for our objective.

45

46 CHAPTER 5. PLAY WITH TABA USING IO SWAPPING

Results Arguments

'

&

$

%
[]
?

[3]¾3 ?

[2,3]¾2 ?

[1,2,3]¾1

x

?

[]
6

[6]
6

[5,6]
6

[4,5,6]
6
y

-4

-5

-6

r

[(1,6),(2,5),(3,4)]

6

[(2,5),(3,4)]

6

[(3,4)]

6

[]

6

cnv [1,2,3] [4,5,6]

Figure 5.1. The model of computation process of cnv

5.2 List Reversal

It is expected that IO swapping derives TABA programs by introducing traversals over results from
traversals over arguments. We confirm this observation by demonstrating a derivation of TABA-style
reverse by IO swapping. It is also the first step to derive the cnv, for cnv is specified using reverse.

The function reverse is defined in terms of foldl as follows.

reverse = foldl (\y a−>a:y) []

Applying Corollary 4.1.1 to reverse, we instantly get the following function rev n. The function
rev n is exactly TABA form of reverse as mentioned by Danvy and Goldberg [DG05].

rev_n x = let ([],r) = rev’ x in r

where rev’ [] = (x,[])

rev’ (b:y) = let (a:x’,r’) = rev’ y

in (x’,a:r’)

In fact, both foldl2 in Corollary 4.1.1 and f2 in Corollary 4.4.1 are TABA programs. IO swapping
is therefore a rule for deriving TABA programs.

5.3 Symbolic Convolution

In Section 4.4 we pointed out that applying IO swapping to structural recursions over lists results in
structural recursions over lists. Therefore we can apply fusion law (Theorem 3.3.1) to the result of IO
swapping if the original function is a structural recursion on lists. Combining this fact to the result
of the previous section, we give a systematic and incremental way of derivation of TABA programs.

We here show a systematic derivation of the TABA form of cnv in the Section 5.1. Recall that
cnv is specified as follows:

cnv x y = zip x (reverse y)

5.3. SYMBOLIC CONVOLUTION 47

where we assume that x and y have the same length.
We derive a TABA-style cnv in compositional way. We fuse zip x to the TABA-style reverse,

namely rev n, which we have already derived in the previous subsection.
First of all, the function rev n can be described in terms of foldr. This form is suitable for later

fusion transformation.

rev_n x = snd (foldr (\b (a:x’,r’)−>(x’,a:r’)) (x,[]) x)

Now we calculate TABA program for cnv by promoting the functions into rev n.

cnv x y = zip x (rev_n y)

⇒ zip x (snd (foldr (\b (a:x’,r)−>(x’,a:r)) (y,[]) y))

⇒ snd (id_zip (foldr (\b (a:x’,r)−>(x’,a:r)) (y,[]) y) x)

where id_zip (a,y) x = (a, zip x y)

For promoting id zip into foldr in the above, we check the following two conditions of Theorem 3.3.1.

id_zip (y,[]) x ⇒ (y,[])

id_zip ((\b (a:x’,r)−>(x’,a:r)) b (a:x’,r)) x

⇒ (x’, (head x,a):zip (tail x) r)

⇒ step b (id_zip (a:x’,r)) x

where step b r’ x = let (a:x’,r) = r’ (tail x)

in (x’, (head x,a):r)

Therefore, the fusion transformation gives

cnv x y = snd (foldr step (\x−>(y,[])) y x)

which is actually the following program after unfolding the foldr.

cnv x y = snd (cnv’ y x)

where cnv’ [] = \x−>(y,[])
cnv’ (b:y) = \x−>let (a:x’,r) = cnv’ y (tail x)

in (x’,(head x,a):r)

This program is essentially the same program as the TABA convolution function that we have seen in
Section 5.1. We apply some known calculations to derive apparently the same program. First, applying
η-expansion to remove function values yields the following program, where the case cnv’ [] [] is
obtained from the assumption that length of x and y are the same.

cnv x y = let ([],r) = cnv’ y x in r

where cnv’ [] [] = (y,[])

cnv’ (b:y) (d:z) = let (a:x’,r) = cnv’ y z

in (x’,(d,a):r)

Next we eliminate an unnecessary argument: The first argument of cnv’ is not used at all for producing
results.

cnv x y = let ([],r) = cnv’ x in r

where cnv’ [] = (y,[])

cnv’ (d:z) = let (a:x’,r) = cnv’ z

in (x’,(d,a):r)

This is exactly the TABA program of cnv introduced by Danvy and Goldberg.
This process indicates that combination of IO swapping with other program transformation meth-

ods is effective for deriving TABA programs. In Section 5.4 we develop a much more complicated
example of a palindrome detecting program.

48 CHAPTER 5. PLAY WITH TABA USING IO SWAPPING

5.4 Palindrome Detecting

Danvy and Goldberg [DG02] put a riddle in the beginning of their paper: “Given a list of length n,
where n is not known in advance, determine whether this list is a palindrome in dn/2e recursive calls
and with no auxiliary list.” We will show that our derivation strategy works well for involving cases
and solve this riddle.

We start by solving the problem in a straightforward way without being concerned with its effi-
ciency. We check whether a list is a palindrome or not by turning up the latter half from center of the
list, zipping it with the first half, and checking whether all elements are the same.

palindrome x

= and (map (\(a,b)−>a==b) (zip (take (div (length x) 2) x)

(reverse (drop (div (length x) 2) x))))

Here, for simplicity we assume the length of the list is even. Replacing the zip-reverse pattern with
cnv gives the following program.

palindrome x

= and (map (\(a,b)−>a==b) (cnv (take (div (length x) 2) x)

(drop (div (length x) 2) x)))

Now the problem is how to manipulate cnv, which is not trivial because we have to fuse functions from
both front and back of cnv. To manipulate cnv, Danvy and Goldberg [DG02] proposed a theorem
similar to warm fusion law [LS95], an extension of shortcut deforestation, but their theorem cannot
cope with this problem. It is nice to see later that the existing program transformations are enough
here.

Our derivation of an efficient program for palindrome consists of the following three main steps.

1. Define the following functions to extract subexpressions in the definition of palindrome:

alleq = and⋅(map (\(a,b)−>a==b))
takehalf x = take (div (length x) 2) x

drophalf x = drop (div (length x) 2) x

and derive efficient definitions for them by fusion transformation. Since this derivation is not special,
we give the results only.

alleq ⇒ foldr (\(a,b) r−>a==b && r) True

takehalf x ⇒ foldr’ (\a r x−>head x:r (tail x)) (\x−>[]) x x

drophalf x ⇒ foldr’ (\a r x−>r (tail x)) id x x

Here foldr’ is defined below, being equipped with the same fusion law and tupling law as foldr, as
mentioned in Section 3.3 for general case.

foldr’ f e [] = e

foldr’ f e (a:b:x) = f (a,b) (foldr’ f e x)

2. Apply fusion transformation to merge functions with cnv from both front and back. Here gives a
big picture of the fusion calculation.

palindrome x

= alleq (cnv (takehalf x) (drophalf x))

⇒ {- TABA form for cnv -}

5.4. PALINDROME DETECTING 49

alleq (snd (foldr (\a (b:y’,r)−>(y’,(a,b):r))

(drophalf x, []) (takehalf x)))

⇒ {- Swap alleq and snd by defining id alleq (a,x) = (a, alleq x) -}
snd (id_alleq (foldr (\a (b:y’,r)−>(y’,(a,b):r))

(drophalf x, []) (takehalf x)))

⇒ {- Fuse id alleq with foldr -}
snd (foldr (\a (b:y’,r’)−>(y’,a==b && r’))

(drophalf x, True) (takehalf x)))

⇒ {- Define alleqcnv x y = foldr (\a (b:y’,r’)->(y’,a==b && r’)) (y,True) x -}
snd (alleqcnv (takehalf x) (drophalf x))

⇒ {- By the efficient definition for takehalf -}
snd (alleqcnv (foldr’ (\a r x−>head x:r (tail x)) (\x−>[]) x x)

(drophalf x))

⇒ {- Fuse alleqcnv with foldr’ -}
snd (foldr’ (\a r x y’−> let (b:y,r’) = r (tail x) y’

in (y, head x==b && r’))

(\x y−>(y,True)) x x (drophalf x))

⇒ {- By the efficient definition for drophalf -}
snd (foldr’ (\a r x y’−> let (b:y,r’) = r (tail x) y’

in (y, head x==b && r’))

(\x y−>(y,True)) x x (foldr’ (\a r x−>r (tail x)) id x x))

3. Apply the tupling transformation, which we have discussed in Section 3.6, to avoid twice traversals
of the same data structure x by two foldr’s.

palindrome x

= let

(y’’,([],r)) = foldr’ step (\x’ x y’−>(x’,(y’,True))) x x x y’’

step a r x’ x y’ = let (y’’,(b:y,r’)) = r (tail x’) (tail x) y’

in (y’’,(y, head x==b && r’))

in r

To enhance readability, we unfold the definition of foldr’.

palindrome x = let (y’’,([],r)) = pld x x x y’’ in r

where

pld (a1:b1:x1) (a2:x2) (a3:x3) y’ = let (y’’,(b:y,r’)) = pld x1 x2 x3 y’

in (y’’,(y, a3==b && r’))

pld [] x2 x3 y’ = (x2,(y’,True))

Though this program has a circularity denoted by y’’ in the first line. We can eliminated it by
removing unnecessary variables. We can eliminate the first element of the result and the forth argument
of pld because they do not change during the whole computation steps of the pld. Now we get the
following non-circular program.

palindrome x = let ([],r) = pld x x x in r

where pld (a1:b1:x1) (a2:x2) (a3:x3) = let (b:y,r’) = pld x1 x2 x3

in (y, a3==b && r’)

pld [] x2 x3 = (x2,True)

Noticing that the fact that the second and the third arguments of pld are always the same, we get
the final program.

50 CHAPTER 5. PLAY WITH TABA USING IO SWAPPING

palindrome x = let ([],r) = pld x x in r

where pld (a1:b1:x1) (a2:x2) = let (b:y,r’) = pld x1 x2

in (y, a2==b && r’)

pld [] x2 = (x2,True)

Our final program is essentially the same as the efficient palindrome detecting function of Danvy
and Goldberg [DG02]. Herewith we have solved their riddle. These derivations are an evidence of the
manipulability of IO-swapped functions.

5.5 Symbolic Convolution Revisited

As we have mentioned in Section 5.1, no existing fusion method derives the cnv, that is the cnv

introduced by Danvy and Goldberg, from the following specification.

cnv x y = zip x (reverse y)

For example, using descriptional composition or shortcut deforestation with Nishimura’s higher-order
removal, we get the following program after removing constant propagation.

cnv2 x y = let ([],r) = walk y [] in r

where

walk [] r = (x,r)

walk (b:y) r = let (a:x,r’) = walk y ((a,b):r)

in (x,r’)

It is clearly a TABA program for a symbolic convolution function, but differs from the cnv because of
a bit technical reason. The existing fusion methods produce the function whose recursion structure is
the same as that of the function that produces the intermediate data structure. Because the producer
function in the specification above is reverse with the recursion argument y, fusion should produce
the function that uses y as a recursion argument. What we want to get is the cnv function whose
recursion argument is x. This fact points out that we cannot derive the cnv without changing the
specification. Actually, we can derive the cnv from the following specification with fusion:

cnv x y = ((reverse⋅)⋅zip) (reverse x) y

where producer function use x as recursion argument.
What IO swapping achieves is to shift the selection of the recursion argument from y to x. Then

we can derive the desired function without suffering the trouble of specification. In fact applying IO
swapping to cnv2 above derives the cnv.

It is worthy to mention about another derivation of the cnv, which is shown by Danvy and Gold-
berg [DG05]. It is based on continuation-passing style (in short, CPS) transformation and defunc-
tionalization [Rey98]. They discovered that starting from some TABA-style programs, applying de-
functionalization after CPS transformation removes TABA-style and derives a composition of two
tail-recursive functions. Their derivation is the inverse of this step. Starting from a composition
of tail-recursive functions, recognizing it as “defunctionalized” form, constructing a function before
defunctionalization and CPS transformation, and they derive TABA programs. In short, they derive
the cnv from this specification:

cnv x y = ((reverse⋅)⋅zip) (reverse x) y

5.5. SYMBOLIC CONVOLUTION REVISITED 51

and as we have mentioned before, we can derive the cnv by fusion whenever we have this specification
for cnv. Now we find another issue: What relationship are there between defunctionalization and
fusion? Researching about this issue will be fruitful, because CPS transformation and defunction-
alization have their applications [DN01] which is a bit different from the existing researches about
fusion. But it exceeds the scope of this thesis.

Chapter 6

Reinforce the Power of
Transformations by IO Swapping

In Chapter 5, we have shown an application of IO swapping as a program transformation and its
effect has been confirmed. This chapter demonstrates an application of IO swapping as a meta trans-
formation: IO swapping can take a program transformation and returns a program transformation
that is IO-swapped transformation of the old one, and introduces symmetry of program manipulation
for call-time computations and return-time computations. We show that the existing transformations
such as Nishimura’s higher-order removal [Nis04] and Meijer’s higher-order promotion [Mei92] are
derivable from more primitive cases.

After we discuss a general framework of manipulating recursive functions and the effect of IO swap-
ping on it, we extend our methodology to manipulations of non-linear recursive functions. Throughout
some examples, we confirm that IO swapping certainly indicates a relationship between manipulations
of results and these of arguments.

6.1 IO Swapping as a Meta Transformation

Recall that fold promotion theorem does not work at all for accumulative arguments as we mentioned
in Section 3.3. For example, the result of applying Theorem 3.3.1 to length⋅reverse is the following.

lengthreverse x = aux x []

where aux [] h = length h

aux (a:x) h = aux x (a:h)

On one hand, the result is not sufficient in the sense that no intermediate data structure is removed.
On the other hand Theorem 3.3.1 certainly achieve its business, for Theorem 3.3.1 is a method for
manipulating results. We attain a manipulation for results by Theorem 3.3.1, and we need another
manipulation for accumulative arguments.

Now think about how to solve the problem above, that is to say how to make a new manipulation
method for removing intermediate data structures in accumulative arguments. It seems that making
a rule from nothing is uneconomical because the new manipulation should be similar with the manip-
ulation for results, namely Theorem 3.3.1. Actually we can make the new rule from Theorem 3.3.1
with IO swapping. We are going to see the solution in Section 6.3, and here we explain the general
idea.

Our idea is to change the world by IO swapping for manipulation: If arguments are hard to
manipulate in a world, we will transfer the program to another world where arguments are manipulable.

53

54 CHAPTER 6. REINFORCE THE POWER OF TRANSFORMATIONS BY IO SWAPPING

Program f

Call-time
Computations :Af

Return-time
Computations :Rf

?
Transformation T

Program g

Call-time
Computations :Ag

Return-time
Computations :Rg

Program f ′

Call-time
Computations :Rf

Return-time
Computations :Af

?
Transformation T ′

Program g′

Call-time
Computations :Rg

Return-time
Computations :Ag

¾ -

IO
Swapping

¾ -

IO
Swapping

Figure 6.1. The framework provided by IO swapping

Such methodologies are used in quite various field, for example, descriptional composition based
fusion method such as [Küh98][Küh99][CDPR99][Voi04] are based on the same methodology where
the “another world” is the world of AGs. We chose the “another world” as IO-swapped world that
comes from IO swapping. In the IO-swapped world, arguments in the original world are manipulable
because it becomes results. For example, applying IO swapping to lengthreverse above, then we get
the following function:

lengthreverse2 x = let ([],h) = aux x in length h

where aux [] = (x,[])

aux (b:y) = let (a:x’,h) = aux y

in (x’, a:h)

where the problem is the manipulation of results, and Theorem 3.3.1 is sufficient to achieve it.
Our method is summarized in Figure 6.1. Assume that there are programs f , g and a program

transformation T such that T [[f]] = g. IO swapping gives functions equivalent to f and g, namely f ′

and g′. For arbitrarily left-side pair related by T , such as f and g, IO swapping gives corresponding
right-side pair, such as f ′ and g′. In consequence, we can define a program transformation T ′ by
the relation of f ′ and g′. Note that T ′ is specified by the sequence of program transformations:
Applying IO swapping after applying T after applying IO swapping. Since T ′ works as an IO-swapped
transformation of T , we can make IO-swapped rule of T using IO swapping. In other words, IO
swapping gives a relationship between manipulation of arguments and results of recursive functions.

Our method has its advantages than others, which follow from characteristics of IO swapping
such as Theorem 4.3.1 and Theorem 4.3.2. First, our method is closed under the world of functional
programs. Though view of functions differs, the IO-swapped world is essentially the same as the
original world due to Theorem 4.3.1 and we can apply the same manipulation methods on them.
Second, we can manipulate the functions of the IO-swapped world easily because of Theorem 4.3.2,
and thus our method is easy to combine with other manipulation methods on functional programs.
Lastly, we can deal with a very large set of programs, and return from the IO-swapped world easily
by applying IO swapping once more. AGs have its drawback to expressiveness, where we cannot
express anything but structural recursions. Relational AGs has enough expressiveness, but return to
the functional world is problematic as we have seen in Section 4.1. Ours does not suffer from such
problems.

6.2. HIGHER-ORDER REMOVAL FOR ACCUMULATIVE ARGUMENTS 55

6.2 Higher-Order Removal for Accumulative Arguments

In this section, we try to remove higher-order accumulative arguments. It is important even for fusion
as mentioned in Section 3.8, though, higher-order removal for accumulative arguments is not so easy
as that for results. Though we have the classic, simple and effective transformation rule namely η-
expansion to remove higher-order of results, it does not work for arguments. In this section, we show
that η-expansion with IO swapping achieves an effective higher-order removal for function arguments.
This reveals that IO swapping reinforces power of program transformations so that transformations
that copes with results become to be able to manipulate accumulative arguments also.

We use the function sumCP, defined as follows, as an example.

sumCP x = sum’ x id

where sum’ [] k = k 0

sum’ (a:x) k = sum’ x (\v−>k(a+v))
The function sumCP has a higher-order accumulative argument. We derive a first order program from
it by using IO swapping and η-expansion.

Recall the discussion in the previous section. We can get the new, IO-swapped transformation by
putting the transformation between a pair of IO swapping. So first we apply IO swapping.

Because sumCP is an instance of foldl,

sumCP x = foldl (\k a v−>k(a+v)) id x 0

we use Corollary 4.1.1 and get the following program.

sumCP’ x = let ([], k) = sum_n’ x in k 0

where sum_n’ [] = (x, id)

sum_n’ (b:y) = let (a:x’,k) = sum_n’ y

in (x’,\v−>k(a+v))
In this program, higher-order values appear only in the results and applying η-expansion is sufficient
for higher-order removal. We define a function sum n’’ which takes an extra argument and gives it
to the second element of the result of sum n’ as follows,

sum_n’’ y v = let (x’,k) = sum_n’ y in (x’,k v)

and replace sum n’ in the definition of sumCP’ by sum n’’.

sumCP’ x = let ([], k) = sum_n’’ x 0 in k

where sum_n’’ [] v = (x, v)

sum_n’’ (b:y) v = let (a:x’,k) = sum_n’’ y (a+v)

in (x’,k)

Higher-order removal is successfully achieved.
Now that the effect of IO swapping becomes needless, we eliminate it by applying IO swapping once

more and derive a more familiar definition. Applying Corollary 4.4.1 backward, which is equivalent
to applying IO swapping once more and eliminating unnecessary variables, results in the following
definition.

sumCP x = sum’’ x

where sum’’ [] = 0

sum’’ (a:x’) = let v = sum’’ x’

in a+v

56 CHAPTER 6. REINFORCE THE POWER OF TRANSFORMATIONS BY IO SWAPPING

This is ordinary definition of a function summing up all elements of a list. We can see that our strategy
works successfully.

Now we will summarize the transformation above as a formal definition. As we have seen, the
point of the IO-swapped transformation is the step where we apply the original transformation, in
this case η-expansion, to the result of IO swapping. Recall that result of IO swapping is described as
the following function.

f2 x h0 = let ((x’,h),r’) = f2’ (x, g1 x’ h) in r’

where

f2’ (y,r) = if p y then ((x, g0 r h0),r)

else let ((x’,h),r’) = f2’ (k y, g3 x’ r h)

in ((k x’, g2 x’ r h),r’)

If we can define the rule for η-expansion for this function, then we can get higher-order removal rule for
accumulative argument. Though it is not so obvious, we can achieve it by clarifying the intersection
of the range of IO swapping and the domain of η-expansion. We should be careful that in the result
of f2’ the first element of first component (denoted by x’) is a recursion argument and the second
element (r’) does no computation. We should manipulate the second element of first component (h)
only. Intuitively, the rule should be something like the following.

f2a x h0 v0 = let ((x’,h),r’) = f2b’ (x, g1 x’ (h v0)) in r’

where

f2a’ (y,r) = if p y then ((x, \v−>g0 r h0 v),r)

else let ((x’,h),r’) = f2a’ (k y, g3 x’ r h)

in ((k x’, \v−>g2 x’ r h v),r’)

m
f2b x h0 v0 = let ((x’,h),r’) = f2b’ (x, g1 x’ h) v0 in r’

where

f2b’ (y,r) v = if p y then ((x, g0 r h0 v),r)

else let ((x’,h),r’) = f2b’ (k y, g3 x’ r h)

in ((k x’, g2 x’ r h v),r’)

This rule seems to be correct, but makes type error because recursive call of f2b’ should be take one
more argument, which corresponds to the argument of h because the extra arguments correspond to
the argument of recursive call’s results. If we can figure out what should be applied to h, then we will
know what value should be passed as the extra argument of the recursive call. To do this, we specify
the definition of f2’ so that we can know the argument of h.

Lemma 6.2.1.
Assume that g0, g1, g2, g3, and g4 are given functions. Then the following two functions f2a and
f2b are equivalent.

f2a x h0 v0 = let ((x’,h),r’) = f2a’ (x, g1 x’ (h v0)) in r’

where

f2a’ (y,r)

= if p y then ((x, \v−>g0 r h0 v),r)

else

let ((x’,h),r’) = f2a’ (k y, g3 x’ r)

c = \v−>g2 x’ r v (h (g4 x’ r v))

in ((k x’, c),r’)

6.3. FUSING ACCUMULATIVE FUNCTIONS 57

f2b x h0 v0 = let ((x’,h),r’) = f2b’ (x, g1 x’ h) v0 in r’

where

f2b’ (y,r) v

= if p y then ((x, g0 r h0 v),r)

else

let ((x’,h),r’) = f2b’ (k y, g3 x’ r) (g4 x’ r v)

in ((k x’, g2 x’ r v h),r’)

Proof. It is proved by η-expansion, as similarly above. Start from f2a, we define f2b’ as

f2b’ (y,r) v = let ((x’,h),r’) = f2a’ (y,r) in ((x’,h v),r’)

Then we get f2b.

Now we are ready to get the higher-order removal rule for function argument. Applying IO
swapping both f2a and f2b, we get the following theorem.

Theorem 6.2.2 (Higher-order removal for accumulative arguemnts).
Assume that g0, g1, g2, g3, and g4 are given functions. Then the following two functions f1 and f2
are equivalent.

f1 x h0 = let r = f’ (x,\v−>g0 r h0 v) in r

where

f’ (x’,h) = if p x’ then g1 x’ (h e)

else let c = \v−>g2 x’ r v (h (g4 x’ r v))

r = f’ (k x’, c)

in g3 x’ r

f2 x h0 = let (r,v) = f’ (x, g0 r h0 v) in r

where

f’ (x’,h) = if p x’ then (g1 x’ h, e)

else let (r,v) = f’ (k x’, g2 x’ r v h)

in (g3 x’ r, g4 x’ r v)

Proof. From Lemma 6.2.1, currying the arguments of f2b’ so that it makes triple, and applying IO
swapping backward to both f2a and f2b, then we get f1 and f2 respectively.

We found that combination of Theorem 6.2.2 and usual η-expansion works as similar to the higher-
order removal method proposed by Nishimura [Nis04], which we have mentioned in Section 3.8, in the
sense that our rule introduces an extra result that corresponds to the argument of the higher-order
argument. He formalized it as a new rule from AG-based method namely descriptional composition,
while we have derived it from η-expansion and IO swapping. We extend this results to the non-linear-
recursive functions in Section 6.5.3.

6.3 Fusing Accumulative Functions

To confirm the effect of meta transformation of IO swapping, this section exploits fusion for accumu-
lative functions. As we saw in Section 3.3 and Section 6.1, Theorem 3.3.1 has its drawback to treating
accumulative functions because it cannot promote a function to accumulative part. We solve this
problem by IO swapping.

58 CHAPTER 6. REINFORCE THE POWER OF TRANSFORMATIONS BY IO SWAPPING

As the previous section, we want to know the intersection of range of IO swapping and domain
of Theorem 3.3.1, and make a transformation rule for it. Because the domain of Theorem 3.3.1 is
foldr function, it is appropriate to think about IO swapping on structural recursions over lists, that
is Corollary 4.4.1. Now we get the following lemma.

Lemma 6.3.1.
Assume that psi, g0, g1, g2, and g3 are given functions. Then the following two functions f2a and
f2b are equivalent provided that psi(g0 r h0) = g0’ r (phi h0), psi(g2 a r h) = g2’ a r (psi h),
and g3 a r h = g3’ a r (psi h).

f2a x h0 = let ([], h, r’) = id_psi_id (f2a’ x (g1 h)) in r’

where

f2a’ [] r = (x, g0 r h0, r)

f2a’ (b:y) r = let (a:x’,h,r’) = f2a’ y (g3 a r h)

in (x’, g2 a r h, r’)

id_psi_id (a,b,c) = (a, psi b, c)

f2b x h0 = let ([], h, r’) = f2b’ x (g1 h) in r’

where

f2b’ [] r = (x, g0’ r (phi h0), r)

f2b’ (b:y) r = let (a:x’,h ,r’) = f2b’ y (g3’ a r h)

in (x’, g2’ a r h, r’)

Proof. It is direct consequence of Theorem 3.3.1. With following two calculations, we can fuse f2a’
and id psi id into f2b’.

(id_psi_id⋅)(\r−>(x, g0 r h0, r)) ⇒ \r−>(x, psi(g0 r h0), r)

⇒ \r−>(x, g0’ r (phi h0), r)

(id_psi_id⋅)((\a y r−>let (a:x’,h,r’) = y (g3 a r h) in (x’, g2 a r h, r’)) a y)

⇒ \r−>let (a:x’,h,r’) = y (g3 a r h) in (x’, psi (g2 a r h), r’)

⇒ \r−>let (a:x’,h,r’) = y (g3’ a r (psi h)) in (x’, g2’ a r (psi h), r’)

⇒ \r−>let (a:x’,h,r’) = ((id_psi_id⋅) y) (g3’ a r h) in (x’, g2’ a r h, r’)

From this lemma, we get the following theorem.

Theorem 6.3.2.
Assume that psi, g0, g1, g2, and g3 are given functions. Then the following two functions f2a and
f2b are equivalent provided that psi(g0 r h0) = g0’ r (phi h0), psi(g2 a r h) = g2’ a r (psi h),
and g3 a r h = g3’ a r (psi h).

f1a x h0 = let r = f1a’ x (g0 r h0) in r

where

f1a’ [] h = g1 (psi h)

f1a’ (a:x’) h = let r = f1a’ x’ (g2 a r h)

in g3 a r h

6.4. DISCUSSION : MANIPULATION OF RECURSIVE FUNCTIONS 59

f1b x h0 = let r = f1b’ x (g0’ r (phi h0)) in r

where

f1b’ [] h = g1 h

f1b’ (a:x’) h = let r = f1b’ x’ (g2’ a r h)

in g3’ a r h

Proof. From Lemma 6.3.1, applying IO swapping backward to both f2a and f2b, then we get f1a and
f1b respectively.

Theorem 6.3.2 is equivalent to Theorem 3.4.2. As we have mentioned in Section 3.4, combining
Theorem 3.3.1 with Theorem 6.3.2 gives a new and useful fusion law for accumulative functions, which
is almost the same as the Theorem 3.4.1. We define a function acc as follows, which is corresponds
to non-circular case of f1a and f1b above.

acc h0 g1 g2 g3 x = acc’ x h0

where acc’ [] h = g1 h

acc’ (a:x) h = g3 a (acc’ x (g2 a h)) h

Now we give a fusion law for acc

Theorem 6.3.3 (Fusion for accumulative functions).
Provided that

phi (g1 h) = g1’ (psi h)

psi (g2 a h) = g2’ a (psi h)

phi (g3 a r h) = g3’ a (phi r) (psi h)

psi h0 = h0’

Then,

phi (acc h0 g1 g2 g3 x) = acc h0’ g1’ g2’ g3’ x

Proof. Define a function g3’’ such that

phi (g3 a r h) = g3’’ a (phi r) h

g3’’ a r h = g3’ a r (psi h)

Note that existence and computability of g3’’ are no matter, for it is an intermediate function
for proof. Now Theorem 3.3.1 proves phi (acc h0 g1 g2 g3 x) = acc h0 (g1’⋅psi) g2 g3’’ x, and
Theorem 6.3.2 proves acc h0 (g1’⋅phi) g2 g3’’ x = acc h0’ g1’ g2’ g3’ x.

As the same as the previous subsection, we can reinforce a transformational power to a primitive
transformation so that it can manipulate accumulative arguments, and derive powerful transformation.
These examples convince us of the effectiveness of our method. We are going to extend this result so
that it can deal with the structural recursions on trees in Section 6.5.2

6.4 Discussion : Manipulation of Recursive Functions

Here we will summarize what we have done in the first half of this chapter, namely Sections 6.2
and 6.3. Our aim is to give a manipulation method for recursive functions. A recursive function is,
from a viewpoint of relational AGs, a sequence of logical relations as we have explained in Section 4.1.
If a recursive function f has a definition,

60 CHAPTER 6. REINFORCE THE POWER OF TRANSFORMATIONS BY IO SWAPPING

f x h = let r’ = f x’ h’ in r

then f organizes a sequence of logical relations from the top to the bottom of the recursion, which
is described in terms of the relationship between x and x’, h and h’, and r and r’. Therefore
manipulation of recursive functions is to find a new sequence of logical relations that is proper for
the aim of the manipulation. In other words a task of a manipulation method is to give a way to
find a proper logical relation that agrees with the aim. For example, η-expansion gives the following
rewriting scheme is proper to remove function results.

f x h = r ⇒ f2 x h k = r k

We do higher-order removal by assuming this f2 is proper for a new logical relation, namely the
specification of the new recursive function, as we have done in Section 6.2. As another example, think
about a fusion problem. To fuse sum into a recursive function f, fold promotion theorem indicates
that the following scheme is proper to achieve fusion.

f x h = r ⇒ f2 x h = (sum r)

In short, a manipulation for recursive functions is a scheme to give a proper definition of a recursive
function.

Now consider IO swapping. IO swapping is also a manipulation of recursive functions, which gives
the following scheme to swap its arguments and results:

f x h = r ⇒ f’ y r = (x, h, r’)

where y and r’ are not essential for its computation. To achieve higher-order removal for accumulative
arguments, we manipulated the function f’ as follows:

f’ y r = (x, h, r’) ⇒ f2’ y r k (x, h k, r’)

and it coincides with the following scheme in the world without IO swapping, as we have seen in
Section 6.2.

f x h = r ⇒ f x (h k) = (r,k)

It actually corresponds to the IO-swapped manipulation of η-expansion. As for fusion, it is similar.
IO swapping gives the following scheme for fusing sum to accumulative argument, as we have seen in
Section 6.3:

f x h = r ⇒ f2 x (sum h) = r

and it is IO-swapped manipulation of fold promotion theorem. In general, if we have a program
transformation method T for recursive function, which is expressed in terms of the following scheme:

T [[f x h = r]] ⇒ f’ x Th[[h]] = Tr[[r]]

IO swapping indicates that the following scheme is proper to achieve an IO-swapped manipulation of
T :

T ′[[f x h = r]] ⇒ f’ x Tr[[h]] = Th[[r]]

This result is a consequence of the fact that IO swapping certainly swaps the arguments and results
of recursive functions. Now that we can make their arguments and results symmetrical, it is rather
natural that IO-swapped schemes work appropriately. We have used this fact implicitly in Section 6.2
and Section 6.3, and we are going to use it explicitly to manipulate non-linear recursions in Section 6.5.

6.5. META TRANSFORMATIONS FOR NON-LINEAR RECURSIONS 61

6.5 Meta Transformations for Non-linear Recursions

In this section, we are going to discuss how IO swapping works for non-linear recursive functions. As
we are going to explain in Section 6.5.1, the most difficult point to manipulate non-linear recursive
functions is how to find a proper specification of a new recursive function. IO swapping helps this
step when we want to manipulate arguments. From the manipulation of results IO swapping indicates
a proper specification of new recursive function, and this specification certainly corresponds to the
IO-swapped manipulation. We are going to confirm it throughout fusion and higher-order removal.

6.5.1 Problems of Manipulating Non-linear Recursive Functions

Even without IO swapping, manipulations for non-linear recursive functions are truly difficult. To see
the difficulties, we introduce the following function flat which flattens a tree into a list:

flat t = flat’ x []

where flat’ (Leaf n) h = n:h

flat’ (Node l r) h = flat’ l (flat’ r h)

Even though flat is not so involved, It is difficult to manipulate flat. For example, consider the
following fusion problem.

sumflat t = sum (flat t)

First we use simple unfolding-folding calculation as follows:

sumflat t = sum (flat t)

⇒ sum (flat’ t [])

Here it seems that we need another function name,

sf1 t h = sum (flat’ t h)

and continue the calculation as follows:

sumflat t ⇒ sum (flat’ t [])

⇒ sf1 t []

sf1 (Leaf n) h ⇒ sum (flat’ (Leaf n) h)

⇒ sum (n:h)

⇒ n + sum h

sf1 (Node l r) h ⇒ sum (flat’ (Node l r) h)

⇒ sum (flat’ l (flat’ r h))

⇒ sf1 l (flat’ r h)

Then we get the following program.

sumflat t = sf1 x []

where sf1 (Leaf n) h = n + sum h

sf1 (Node l r) h = sf1 l (flat’ r h)

It is actually correct but unsatisfactory. Most of its intermediate data structures remain yet.
Next we try to achieve it by fold promotion theorem. Recall that structural recursions on trees

are expressed in terms of the following function foldTree:

62 CHAPTER 6. REINFORCE THE POWER OF TRANSFORMATIONS BY IO SWAPPING

foldTree g1 g2 (Leaf n) = g2 n

foldTree g1 g2 (Node l r) = g1 (foldTree g1 g2 l) (foldTree g1 g2 r)

and we can write flat’ by foldTree as follows:

flat’ t = foldTree (\l r h−> l(r h)) (\n h−> n:h) t

Using Theorem 3.3.2, we calculate as follows:

(sum⋅)((\n h−> n:h) n) ⇒ (\h−> n+sum h)

(sum⋅)((\l r h−> l(r h)) l r) ⇒ (\h−> (sum⋅l)(r h)))

Here we reach to a stick. We cannot make (sum⋅) reach to r and satisfy the condition of fusion.
Theorem 3.3.2 indicates that to achieve a sufficient transformation we should make all recursions
have the same recursive definition. We cannot make the calculation succeed because of this condi-
tion, nevertheless it is truly proper, for if we omit it we get an insufficient result as we have got
from unfolding-folding calculation. To solve this problem, we need to change the specification of the
produced recursive function. We have used the following equation as a specification:

sf1 t h = sum (flat’ t h)

but the calculations above have shown this specification is not sufficient. In fact, the following one is
a proper:

sf2 t (sum h) = sum (flat’ t h)

because we need to make (sum⋅) reach to the recursion of its right subtree.
It is a typical difficulty that comes from non-linear use of the recursion. If we have non-linear

use of the recursion we often need to keep these recursions are the same after a manipulation. It
makes a great hardship. To keep them the same we need to find a proper specification of the resulting
recursive function. As we have explained in Section 6.4, a manipulation of a recursive function is to
find a new invariant that holds throughout its recursion. In a linear-recursion, the invariant is used
only by is its parent recursion, then top-down manipulation is enough because it implicitly corresponds
to induction. In a non-linear recursion, the invariant is used not only by its parent recursion step but
also by its brothers, then explicit bottom-up induction is indispensable. A necessity to find a proper
specification reflects a necessity of induction.

We are going to show that IO swapping indicates a proper specification.

6.5.2 Fusion for Accumulative Functions on Tree

As we have seen in Section 6.5.1, fusion for flat is difficult. We need to find a proper specification of
the recursive function. Naive transformation derives the following specification:

sf1 t h = sum (flat’ t h)

and it is not proper. Now we will show IO swapping helps to derive the proper specification.
Recall that the result of a naive fusion is as follows.

sumflat t = sf1 x []

where sf1 (Leaf n) h = n + sum h

sf1 (Node l r) h = sf1 l (flat’ r h)

6.5. META TRANSFORMATIONS FOR NON-LINEAR RECURSIONS 63

Here sum is applied to the accumulative argument h thus it is a problem to fuse a function into
accumulative arguments. As we have seen in Section 6.3, IO swapping enables to solve such a problem
for linear-recursions. We try manipulating by the same way with that in Section 6.3. First, applying
IO swapping for tree iterating functions (Theorem 4.5.2) to sf1, we get the following program.

sf1_ t e = let (Leaf n, h, r’) = sf1_’ t (n+sum h) in r’

where sf1_’ (Leaf n) r = (t, e, r)

sf1_’ (Node lt’ rt’) lr = let (Node lt rt, h, r’) = sf1_’ lt lr

in (lt, flat’ rt h, r’)

Extracting sum as follows,

let (Leaf n, h, r’) = sf1_’ t (n+sum h) in r’

⇒ let (Leaf n, h, r’) = id_sum_id (sf1_’ t (n+h)) in r’

where id_sum_id (a,b,c) = (a, sum b, c)

and we try fusing as follows.

id_sum_id (sf1_’ (Leaf n) r) ⇒ (t, sum e, r)

id_sum_id (sf1_’ (Node lt’ rt’) lr)

⇒ let (Node lt rt, h, r’) = sf1_’ lt lr

in (lt, sum (flat’ rt h), r’)

⇒ let (Node lt rt, h, r’) = sf1_’ lt lr

in (lt, sf1 rt h, r’)

Now we face a stick again. The sum (or id_sum_id) disappears, and we cannot derive any recursive
function. This result indicates that the definition of sf1 is certainly not proper.

We should find a new and proper hypothesis. To get it, recall the calculation for the base case
above:

id_sum_id (sf1_’ (Leaf n) r) ⇒ (t, sum e, r)

where e is the initial accumulative argument of sf1_. This equation indicates that the accumulative
argument is summed before used in the recursion, whenever we success the fusion. In other words, the
accumulative argument has no need to be a list but a summed value is enough. That is, the following
specification of the new recursive function may be much more proper.

sf2 t (sum h) = sf1 t h

Note that it is certainly IO-swapped manipulation of Theorem 3.3.2. Theorem 4.5.2 actually indicates
that IO-swapped manipulation is proper. Now that we get a new specification, we retry calculation
to get the definition of sf2

sf2 (Leaf n) h ⇒ sf1 (Leaf n) h’ {- where h = sum h’ -}
⇒ n + sum h’

⇒ n + h

sf2 (Node l r) h ⇒ sf1 (Node l r) h’ {- where h = sum h’ -}
⇒ sf1 l (flat’ r h’)

⇒ sf2 l (sum (flat’ r h’))

⇒ sf2 l (sf1 r h’)

⇒ sf2 l (sf2 r (sum h’))

⇒ sf2 l (sf2 r h)

64 CHAPTER 6. REINFORCE THE POWER OF TRANSFORMATIONS BY IO SWAPPING

sumflat t ⇒ sf1 t []

⇒ sf2 t (sum [])

⇒ sf2 t 0

Calculations are successfully finished, and we get the following program.

sumflat t = sf2 t 0

where sf2 (Leaf n) h = n + h

sf2 (Node l r) h = sf2 l (sf2 r h)

We can achieve the transformation completely.
Now we formalize these calculations above. Its formalization is achieved as similar way with that

in Section 6.3. We clarify the intersection of range of IO swapping and domain of the transformation,
which is fusion in this case, and confirm the condition to succeed in the transformation with finding a
proper specification of the resulting recursive function. We give a fusion law for the following function
accTree, which is a general form of functions that iterate its computation over trees with accumulative
arguments.

accTree g1 g2 g3 g4 h0 t = accTree’ t h0

where accTree’ (Leaf n) h = g1 n h

accTree’ (Node l r) h = let lr = accTree’ l (g2 lr rr h)

rr = accTree’ r (g3 lr rr h)

in g4 lr rr h

Theorem 6.5.1 (Fusion for Accumulative Functions on Tree).
Provided that

g1 n h = g1’ n (phi h)

phi (g2 lr rr h) = g2’ lr rr (phi h)

phi (g3 lr rr h) = g3’ lr rr (phi h)

phi (g4 lr rr h) = g4’ lr rr (phi h)

psi h0 = h0’

Then,

accTree g1 g2 g3 g4 h0 t = accTree g1’ g2’ g3’ g4’ h0’ t

for all g1, g2, g3, g4, h0, and t.

Proof. We will give an inductive proof about the height of the input tree t. If the height of t is 1,
that is t is Leaf n, then

accTree g1 g2 g3 g4 h0 (Leaf n) ⇒ g1 n h0

⇒ g1’ n (phi h0)

⇒ g1’ n h0’

⇒ accTree g1’ g2’ g3’ g4’ h0’ (Leaf n)

the hypothesis holds.
Assume that the hypothesis holds for all t whose height is less than k. If the height of t=Node l r

is k, then

6.5. META TRANSFORMATIONS FOR NON-LINEAR RECURSIONS 65

accTree g1 g2 g3 g4 h0 (Node l r)

⇒ let lr = accTree g1 g2 g3 g4 (g2 lr rr h0) l

rr = accTree g1 g2 g3 g4 (g3 lr rr h0) r

in g4 lr rr h0

⇒ {- From hypothesis: Note that the height of l and r is less than k -}
let lr = accTree g1’ g2’ g3’ g4’ (g2 lr rr h0) l

rr = accTree g1’ g2’ g3’ g4’ (g3 lr rr h0) r

in g4 lr rr h0

⇒ let lr = accTree g1’ g2’ g3’ g4’ (g2’ lr rr (phi h0)) l

rr = accTree g1’ g2’ g3’ g4’ (g3’ lr rr (phi h0)) r

in g4’ lr rr (phi h0)

⇒ let lr = accTree g1’ g2’ g3’ g4’ (g2’ lr rr h0’) l

rr = accTree g1’ g2’ g3’ g4’ (g3’ lr rr h0’) r

in g4’ lr rr h0’

⇒ accTree g1’ g2’ g3’ g4’ h0’ (Node l r)

the hypothesis holds.

This theorem is an extension of Theorem 6.3.2 to the tree iterating functions. As similar with
the case of Section 6.3, combining this theorem with usual fold promotion theorem gives higher-order
promotion theorem namely Theorem 3.4.1.

The use of our strategy is not limited to fusion. In general, if we have a recursive function f on
trees, we try applying some transformation T to an auxiliary function of IO-swapped f, namely f_’,
and get the following rewiring step:

T [[f_’ (Leaf n) r = (t, e, r)]] ⇒ f_’ (Leaf n) Tr[[r]] = (t, Th[[e]], r)

indicates the existence of a much more proper specification g,

g t Th[[e]] = Tr[[r]] where r = f t e

and it points out that our discussion in Section 6.4 is certainly applicable for manipulations of non-
linear recursions. We are going to confirm its effectiveness by using it for a higher-order removal
problem.

6.5.3 Removing Higher-Order Accumulative Arguments on Tree

In this subsection, we try to remove higher-order terms in accumulative arguments, as the same as
Section 6.2. We can derive another definition of sumflat by choosing another specification of recursive
function as follows:

sf3 t (\n−>n+sum h) = sf1 t h

and applying Theorem 6.5.1 we get the following program.

sumflat t = sf3 t id

where sf3 (Leaf n) h = h n

sf3 (Node l r) h = sf3 l (\n−> n + sf3 r h)

The function sf3 has a higher-order accumulative argument. We remove it with η-expansion and IO
swapping.

First we apply Theorem 4.5.2 to sf3. The result is as follows.

66 CHAPTER 6. REINFORCE THE POWER OF TRANSFORMATIONS BY IO SWAPPING

sf3_ t e = let (Leaf n, h, r’) = sf3_’ t (h n) in r’

where sf3_’ (Leaf n) r = (t, e, r)

sf3_’ (Node lt’ rt’) lr = let (Node lt rt, h, r’) = sf3_’ lt’ lr

in (lt, \n−> n + sf3 rt h, r’)

Because the second element in the result is a higher-order term, we try to use an extension of η-
expansion in the same manner with Section 6.2.

sf4_’ tt (r,k) = let (t, h, r’) = sf3_’ tt r in (t, h k, r’)

Applying an extension of η-expansion is fail as similar with the fusion case. The existence of sf3
prevents the transformation. What we need is a new specification of the resulting recursive function.
From our strategy we derive a candidacy of a proper specification from the base case.

sf3_’ (Leaf n) r = (t, e, r) ⇒ sf4_’ (Leaf n) (r,k) = (t, e k, r)

And it is actually IO-swapped manipulation of η-expansion. Now we get a specification:

sf4 t (e k) = (r,k) {- where r = sf t e -}
We start applying an extension of η-expansion with this hypothesis. For the base case,

sf4_’ (Leaf n) (r,k) = (t, e k, r)

and top of the recursion is easy.

sf4_ t e = let (Leaf n, h, r’) = sf4_’ t (h, n) in r’

Step case is as follows:

sf4_’ (Node lt’ rt’) (lr,k)

⇒ let (Node lt rt, h, r’) = sf3_’ lt’ lr in (lt, k + sf3 rt h, r’)

⇒ let (Node lt rt, h, r’) = sf3_’ lt’ lr

(rr,rk) = sf4 rt (h rk)

in (lt, k + rr, r’)

⇒ let (Node lt rt, h, r’) = sf4_’ lt’ (lr,rk)

(rr,rk) = sf4 rt h

in (lt, k + rr, r’)

Then we get the following definition.

sf4_ t e = let (Leaf n, h, r’) = sf4_’ t (h, n) in r’

where

sf4_’ (Leaf n) (r,k) = (t, e k, r)

sf4_’ (Node lt’ rt’) (lr,k) = let (Node lt rt, h, r’) = sf4_’ lt (lr,rk)

(rr,rk) = sf4 rt h

in (lt, k + rr, r’)

Higher-order removal is certainly achieved. Finally we remove the effect of IO swapping, and we get
the following program.

sumflat t = let (r,k) = sf4 t k in r

where sf4 (Leaf n) h = (h,n)

sf4 (Node lt rt) h = let (lr,k) = sf4 lt (k+rr)

(rr,rk) = sf4 rt h

in (lr,rk)

6.5. META TRANSFORMATIONS FOR NON-LINEAR RECURSIONS 67

Here we get a first order program. We succeed in removing higher-order in the accumulative argument.
Now we formalize the calculation above into a rule as Section 6.2. The following theorem is an

extension of Theorem 6.2.2 to tree iterating functions.

Theorem 6.5.2 (Higher-order removal for accumulative arguments on trees).
Assume that g0, g1, g2, g3, g4, g5, g6, and g7 are given functions. Then the following two functions
f1 and f2 are equivalent for all x and h.

f1 t h = let r = f1’ t (\v−>g0 r (h(g5 r v))) in r

where f1’ (Leaf n) h = g1 n (h(g6 n))

f1’ (Node l r) h = let lr = f1’ l (\lv−>g2 lr rr lv)

rr = f1’ r (\rv−>g3 lr rr rv (h(g7 lr rr rv)))

in g4 lr rr h

f2 t h = let (r,v) = f2’ t (g0 r (h(g5 r v))) in r

where f2’ (Leaf n) h = (g1 n h, g6 n)

f2’ (Node l r) h = let (lr,lv) = f2’ l (g2 lr rr lv)

(rr,rv) = f2’ r (g3 lr rr rv h)

in (g4 lr rr h, g7 lr rr rv)

Proof. We give an inductive proof concerning with the height of the input tree. Start from the
function f1, we show that the following specification is proper to remove the higher-order accumulative
argument.

f2’ t (h k) = (r,k) {- where f1’ t h = r, for all t and h -}
We use this specification as the hypothesis, for it is sufficient to prove the theorem.

If the height of the input tree is 1, that is t is a Leaf n, then

f1’ (Leaf n) h ⇒ g1 n (h(g6 n))

f2’ (Leaf n) h’ ⇒ (g1 n h’, g6 n)

here h’= h(g6 n) is appropriate and the hypothesis holds.
Assume that the hypothesis holds if the height of t is less than k. If the height of t=Node l r is

k then

f1’ (Node l r) h

⇒ let lr = f1’ l (\lv−>g2 lr rr lv)

rr = f1’ r (\rv−>g3 lr rr rv (h(g7 lr rr rv)))

in g4 lr rr

⇒ {- From hypothesis: Note that the height of l and r is less than k -}
let (lv,lr) = f2’ l (g2 lr rr lv)

(rr,rv) = f2’ r (g3 lr rr rv (h(g7 lr rr rv)))

in g4 lr rr

f2’ (Node l r) h’

⇒ let (lv,lr) = f2’ l (g2 lr rr lv)

(rr,rv) = f2’ r (g3 lr rr rv h’)

in (g4 lr rr, g7 lr rr rv)

here h’ = h(g7 lr rr rv) is appropriate and the hypothesis holds.

As we have mentioned in Section 6.2, this theorem is quite similar with the higher-order removal
method proposed by Nishimura.

Chapter 7

Manipulating Circular Functions

In this chapter, we will try to manipulate circular programs based on IO swapping. IO swapping
gives an insight: Circular programs are related with accumulative programs. To say more precisely,
circularities are IO-swapped appearance of accumulation. According to this insight we well show that
the difficulty to manipulating a circular program is not circularity itself, but a non-linear use of values.

7.1 Relating Circular and Accumulative Functions

First of all, a circularity is a relative of an accumulation. As we have explained in Section 2.3.2, a
circularity is computational dependency from a result to an argument. It is an IO-swapped represen-
tation of an accumulation, namely computational dependency from an argument to a result. To see
this, consider the following repminl function:

repminl x = let (r,m) = repminl’ x m in r

where repminl’ [a] m = ([m], a)

repminl’ (a:x) m = let (r,n) = repminl’ x in (m:r, min a n)

which corresponds to the list version of the repmin problem. It has an accumulation denoted by the
accumulative argument m and a global circularity in the top of the recursions denoted by the variable
r. Applying IO swapping we get the following program.

repminl_ x = let ([a],m,r’) = aux x ([m],a) in r’

where aux (b:y) (r,n) = let (a:x,m,r’)= aux y (m:r, min a n)

in (x,m,r’)

aux [b] (r,m) = (x,m,r)

Though the global circularity turns into an accumulation of the base case, every recursive step has a
local circularity, denoted by m. These are originated from the computational dependency of repminl’.
The relationship between circularities and accumulations are apparent. Circularities are not peculiar.

In fact, IO swapping itself is led from this recognition of circularities. As we have mentioned in
Section 4.4, circularities are vital for IO swapping and it frequently produces circular programs. But
it makes no serious problems, except for a failure of evaluation in a strict setting, because circularities
are nothing but another appearance of accumulations. In addition, and against the intuition, circular
programs are essentially manipulatable.

69

70 CHAPTER 7. MANIPULATING CIRCULAR FUNCTIONS

7.2 Fusing Circular Functions

In this section, we will derive a fusion law for circular programs. Our methodology is that we have
introduced in Chapter 6. We derive a fusion law for circular programs from that of accumulative
programs, as the IO-swapped manipulation of it. However, it is not a direct consequence of IO
swapping. Non-linear use of values prevents manipulations, and we need to remove them. We will
clarify the difficulty to manipulate circular programs.

First of all, circularity itself does not disturb manipulations. Recall repminl function, namely the
list version of repmin.

repminl x = let (r,m) = repminl’ x m in r

where repminl’ [a] m = ([m], a)

repminl’ (a:x) m = let (r,n) = repminl’ x

in (m:r, min a n)

To fuse repminl with other functions, for example map (1+), is easy.

map (1+) (repminl x) ⇒ let (r,m) = repminl’ x m in map (1+) r

⇒ let (r,m) = mapS_id (repminl’ x m) in r

where mapS_id (r,m) = (map (1+) r,m)

Now that we promote map to the inside of the circularity, normal fusion methods are sufficient to achieve
fusion. As we have explained in the previous section, circularities are nothing but a representation
of computation flows and they do not disturb manipulations more than accumulative arguments.
Actually we have manipulated circularities both implicitly and explicitly through this thesis.

But the same method does not works the following cycle function.

cycle x = let r = cyc x r in r

where cyc [] h = h

cyc (a:x) h = a: cyc x h

If we do as the same as the previous, we fail as follows:

map (1+) (cycle x) ⇒ let r = cyc x r in map (1+) r

; let r = map (1+) (cyc x r) in r

because, the accumulative argument of cyc, denoted by r, should be the list that is not affected by
map. Then we cannot promote map over the circularity.

Consequently, and we have pointed out it in Section 3.7, the problem of cycle does not come from
the circularity, but comes from the non-linear use of a value. The function cyc uses its result twice.
One for the result of the whole recursion, and another for the accumulative argument.

IO swapping gives an evidence of this observation. From IO swapping, we get the following cycle’

function as an IO-swapped form of cycle:

cycle’ x = let ([], h, r’) = cyc’ x h in r’

where cyc’ [] r = ([], r, r)

cyc’ (b:y) r = let (a:x, h, r’) = cyc’ y (a:r)

in (x, h, r’)

where it has no global circularity concerned with the result of the whole recursion r’. We try fusing
map (1+) as follows.

7.2. FUSING CIRCULAR FUNCTIONS 71

map (1+) (cycle’ x) ⇒ let ([], h, r’) = cyc’ x h in map (1+) r’

⇒ let ([], h, r’) = id_id_mapS (cyc’ x h) in r’

where id_id_mapS (a,b,c) = (a,b, map (1+) c)

Using Theorem 3.3.1, we get the following result where mcyc’ x is equivalent to map (1+) (cycle’ x).

mcyc’ x = let ([], h, r’) = aux x h in r’

where aux [] r = ([], r, map (1+) r)

aux (b:y) r = let (a:x, h, r’) = aux y (a:r)

in (x, h, r’)

The function map (1+) reaches to the bottom of the recursion. To continue the fusion transformation
it seems that we should promote map (1+) into the accumulative argument r. But here we meet with
a stick again. We cannot promote map into the accumulative argument r. The value of r is used twice
and changing it affects the value of second element of the result. It is completely the same problem
with that of circularity of cycle. IO swapping cannot remove non-linear use of variables though it
removes circularities. In summary, the main difficulty to manipulate cycle is a non-linear use of a
value and IO swapping does not help us.

Unwillingly, we try another approach. What we should do is to remove the non-linear use of values.
We achieve it by duplicating the value as follows.

cycle2 x = let (r1,r2) = cyc2 x r2 in r1

where cyc2 [] r = (r,r)

cyc2 (a:x) r = let (r1,r2) = cyc2 x r

in (a:r1,a:r2)

The function cycle2 computes the same value as cycle and it has no non-linear use of value at the
top of the recursion. For cycle2, we can promote a function into it as similar to repminl, using fold
promotion theorem.

Lemma 7.2.1.
The following two functions f1 and f2 are equivalent for all phi, g1, g2, g3, g4, g5, and x.

f1 g1 g2 g3 g4 g5 x = let r = f1’ x (g4 (phi r) r) in g5 (phi r) r

where

f1’ [] h = g3 h

f1’ (a:x) h = let r = f1’ x (g2 a r h)

in g1 a r h

f2 g1 g2 g3 g4 g5 x = let (r1, r2) = f2’ x (g4 r1 r2) in g5 r1 r2

where

f2’ [] h = (phi(g3 h), g3 h)

f2’ (a:x) h = let (r1, r2) = f2’ x (g2 a r2 h)

in (g1’ a r1 h, g1 a r2 h)

provided that for all a, r and h, phi (g1 a r h) = g1’ a (phi r) h.

Proof.
Define the following function f3.

72 CHAPTER 7. MANIPULATING CIRCULAR FUNCTIONS

f3 g1 g2 g3 g4 g5 x = let (r1, r2) = f3’ x (g4 (phi r1) r2)

in g5 (phi r1) r2

where

f3’ [] h = (g3 h, g3 h)

f3’ (a:x) h = let (r1, r2) = f3’ x (g2 a r2 h)

in (g1 a r1 h, g1 a r2 h)

From their definition f3 g1 g2 g3 g4 g5 x is equivalent with f2 g1 g2 g3 g4 g5 x for all g1, g2, g3,
g4, and x, because throughout the recursions, the auxiliary function f3’ of f3 has the same values in
the first element and the second element of the result.

Now we start calculation as follows:

f1 g1 g2 g3 g4 g5 x

⇒ f3 g1 g2 g3 g4 g5 x

⇒ let (r1, r2) = f3’ x (g4 (phi r1) r2) in g5 (phi r1) r2

⇒ let (r1, r2) = phi_id (f3’ x (g4 r1 r2)) in g5 r1 r2

where phi_id (r1,r2) = (phi r1, r2)

We will fuse phi_id with circ2’ using Theorem 3.3.1, for we can express f3’ in terms of foldr as
follows.

f3’ x = foldr (\a r h−> let (r1,r2) = r (g2 a r2 h) in (g1 a r1 h, g1 a r2 h))

(\h−> (g3 h, g3 h)) x

We achieve the fusion by checking the following conditions.

phi_id ⋅ (\h−> (g3 h, g3 h)) = (\h−> (phi (g3 h), g3 h))

phi_id ⋅ ((\a r h−> let (r1,r2) = r (g2 a r2 h) in (g1 a r1 h, g1 a r2 h)) a r)

⇒ (\h−> let (r1,r2) = r (g2 a r2 h) in (phi (g1 a r1 h), g1 a r2 h))

⇒ (\h−> let (r1,r2) = (phi_id⋅r) (g2 a r2 h) in (g1’ a r1 h, g1 a r2 h))

⇒ (\a r h−> let (r1,r2) = r (g2 a r2 h) in (g1’ a r1 h, g1 a r2 h)) a (phi_id⋅r)

Then we get the following program.

f1 g1 g2 g3 g4 g5 x = let (r1, r2) = aux x (g4 r1 r2) in g5 r1 r2

where

aux x = foldr (\a r h−> let (r1,r2) = r (g2 a r2 h) in (g1’ a r1 h, g1 a r2 h))

(\h−> (phi (g3 h), g3 h)) x

The result is actually f2 in the proposition above, after unfolding foldr.

But Lemma 7.2.1 is not enough. It derives the following program for mcyc = map (1+)(cycle x).

mcyc x = let (r1,r2) = aux x r2 in r1

where aux [] r = (map (1+) r,r)

aux (a:x) r = let (r1,r2) = aux x r

in ((a+1):r1,a:r2)

Now the base case of aux has a non-linear use of a value, denoted by the variable r, that prevents
the further manipulation. It is the IO-swapped version of the non-linear use of a value in cycle. In
cycle results are used twice, and in mcyc arguments are used twice. IO swapping with Lemma 7.2.1
solves this problem, as similar to Section 6.3.

Lemma 7.2.2.
The following two functions f4_ and f5_ are equivalent for all psi, g1, g2, g3, g4, and x.

7.2. FUSING CIRCULAR FUNCTIONS 73

f4_ g1 g2 g3 g4 x = let ([],h,r’) = f4_’ x (g3 (psi h) h) in r’

where f4_’ [] r = (x, g4 r, r)

f4_’ (b:y) r = let (a:x,h,r’) = f4’ y (g1 a r h)

in (x, g2 a r h, r’)

f5_ g1 g2 g3 g4 x = let ([],(h1,h2),r’) = f5_’ x (g3 h1 h2) in r’

where f5_’ [] r = (x, (psi(g4 r), g4 r), r)

f5_’ (b:y) r = let (a:x,(h1,h2),r’) = f4’ b (g1 a r h2)

in (x, (g2’ a r h1, g2 a r h2), r’)

provided that for all a, r and h, psi (g2 a r h) = g2’ a r (psi h).

Proof. We start calculation as follows.

f4_ g1 g2 g3 g4 x

⇒ let ([],h,r’) = f4_’ x (g3 (psi h) h) in r’

⇒ let ([],h,r’) = f4_’ x (g3 (id_psi_id ([],h,r’)) h) in r’

where id_psi_id (x,h,r) = (x, psi h, r)

Then, we get the following program from Lemma 7.2.1:

f4_ g1 g2 g3 g4 x = let (([],h1,r1’),([],h2,r2’)) = aux x (g3 h1 h2) in r2’

where

aux [] r = (id_psi_id (x, g4 r, r), (x, g4 r, r))

aux (b:y) r = let ((a1:x1,h1,r1’),(a2:x2,h2,r2’)) = f4’ b (g1 a2 r2 h2)

in ((x1, g2’ a1 r h1, r1’),(x2, g2 a2 r h2, r2’))

Removing unnecessary variables and swapping the order of the elements inside the tuple, we get the
program equivalent to f5.

Lemma 7.2.3.
The following two functions f4 and f5 are equivalent for all psi, g1, g2, g3, g4, and x.

f4 g1 g2 g3 g4 x = let r = f4’ x (g4 r) in r

where f4’ [] h = g3 (psi h) h

f4’ (a:x) h = let r = f4’ x (g2 a r h)

in g1 a r h

f5 g1 g2 g3 g4 x = let r = f5’ x (psi (g4 r), g4 r) in r

where f5’ [] (h1, h2) = g3 h1 h2

f5’ (a:x) (h1, h2) = let r = f5’ x (g2’ a r h1, g2 a r h2)

in g1 a r h2

provided that for all a, r and h, psi (g2 a r h) = g2’ a r (psi h).

Proof. Applying IO swapping backward to f4_ and f5_ these are defined in Lemma 7.2.2, then we
get f4 and f5 respectively.

Using Lemma 7.2.3, we can get the following program for mcyc2 = (map (1+))⋅cycle.

mcyc2 x = let (r1,r2) = aux x (map (1+) r2, r2) in r1

where aux [] (h1,h2) = (h1,h2)

aux (a:x) (h1,h2) = let (r1,r2) = aux x (h1,h2)

in ((a+1):r1,a:r2)

74 CHAPTER 7. MANIPULATING CIRCULAR FUNCTIONS

Here we encounter another non-linear use of values and we might need to duplicate r2 once more to
remove it. However, we do not need to do so. Recall that r1 = map (1+) r2, then we can remove map

with unnecessary variables as follows.

mcyc3 x = let r1 = aux x r1 in r1

where aux [] h1 = h1

aux (a:x) h1 = let r1 = aux x h1

in (a+1):r1

We have succeeded in fusion. All intermediate data structures are removed.
We summarize the result in the following theorem. Consider the following higher order function

circ:

circ g1 g2 g3 g4 x = let r = circ’ x (g4 r) in r

where

circ’ [] h = g3 h

circ’ (a:x) h = let r = circ’ x (g2 a r h)

in g1 a r h

where the function circ is a quite general circular function scanning over a list. We can derive a
fusion law for the function circ from Lemma 7.2.1 and Lemma 7.2.3. It is a novel result as far as the
best of our knowledge.

Theorem 7.2.4 (Fusion for Circular Functions).
phi (circ g1 g2 g3 g4 x) = circ g1’ g2’ g3’ g4’ x provided that for all a, r and h, the following
equations hold.

phi (g1 a r h) = g1’ a (phi r) (psi h)

psi (g2 a r h) = g2’ a (phi r) (psi h)

phi (g3 h) = g3’ (psi h)

psi (g4 r) = g4’ (phi r)

Proof. We define f x = phi (circ g1 g2 g3 g4 x). From Lemma 7.2.1, we get the following program.

f x = let (r1, r2) = aux x (g4 r2) in r1

where aux [] h = (phi(g3 h), g3 h)

aux (a:x) h = let (r1, r2) = aux x (g2 a r2 h)

in (g1’ a r1 (psi h), g1 a r2 h)

Remember that throughout the whole recursion, the value of r1 is equivalent to phi r2. From assump-
tion phi (g3 h) is equivalent to g3’ (psi h). Now we can apply Lemma 7.2.3 and get the following
program.

f x = let (r1, r2) = aux x (r1, psi (g4 r2)) in r1

where

aux [] (h1,h2) = (g3’ h1, g3 h2)

aux (a:x) (h1,h2) = let (r1, r2) = aux x (g2’ a (phi r2) h1, g2 a r2 h2)

in (g1’ a r1 (psi h2), g1 a r2 h2)

From assumption psi (g4 r2) is equivalent to g4’ (phi r2). We will remove all psi and phi, because
r1 is equivalent to phi r2 and h1 is equivalent to psi h2 throughout the whole recursion.

7.2. FUSING CIRCULAR FUNCTIONS 75

f x = let (r1, r2) = aux x (r1, g4’ r1) in r1

where

aux [] (h1,h2) = (g3’ h1, g3 h2)

aux (a:x) (h1,h2) = let (r1, r2) = aux x (g2’ a r1 h1, g2 a r2 h2)

in (g1’ a r1 h1, g1 a r2 h2)

Finally we remove unnecessary variables. The second element of the result and the second element
of the accumulative argument is useless anymore. After removing them we get the program that is
actually circ g1’ g2’ g3’ g4’ x.

Note that we can easily prove Theorem 7.2.4 based on free theorem [Wad89]. It implies that this
result is not completely novel.

What IO swapping gives is a guideline for manipulating circular programs. The characteristic of
circular programs is dependency from a result to an argument. IO swapping rewrites this characteristic
as “dependency from an argument to a result”, which usually appears in accumulative programs. This
implies that, if we can appropriately manipulate accumulative programs, IO swapping gives a way to
manipulate circular programs. And IO swapping also gives manipulations of accumulations from
manipulations of results. But the difficulties of circular programs often comes from non-linear use of
values. IO swapping can do nothing about it. Therefore we need to work more to give a sufficient
method to manipulate circular programs.

Chapter 8

Conclusion

In this thesis, we introduced a novel program transformation namely IO swapping. It gives symmetry
of arguments and results to recursive functions. With IO swapping, we could symmetrize not only
program elements or computational dependencies, but also program manipulations. We confirmed
its effectiveness through many examples: We demonstrated derivations and manipulations of TABA
programs. We derived IO-swapped manipulations from primitive cases, such as a fusion method for
accumulative programs and a higher-order removal method that copes with functional accumulation,
and discussed its extension to manipulations of non-linear recursions. We proposed a guideline of
manipulating circular programs and clarified the difficulty to manipulate them.

Now we are trying to clarify the relationship between IO swapping and theories of structural
recursions. The theories of structured recursions are researched in terms of constructive algorith-
mics [MFP91][Fok92], where programs are abstracted using the theory of categories in mathematics.
The framework of constructive algorithmics is very powerful so that many fusion methods introduced in
Chapter 3 are actually described [MFP91][Mei92][TM95][HITT97]. But to the best of our knowledge,
no research gives a proper abstraction to accumulative functions, and in fact we have not succeeded
in describing the IO swapping rule in terms of constructive algorithmics yet.

We also consider that IO swapping is related with synthesis of data structures. IO swapping for
structural recursions on lists produces a new function scanning a list from tail to head. In other words,
it produces a new function that scans a queue-fashion data structure from ordinary lists iterating
function. It is known that manipulation of queues is difficult in purely functional setting. We hope
that IO swapping makes a room for the synthesis of data structures, for example a synthesis of list-like
data structures such as queues, doubly linked lists, circular lists, etc.

77

Acknowledgements

Many people contributed to this thesis. I would like to give my thanks to them.
First of all, I express my great gratitude to my supervisor, Prof. Masato Takeichi. He always gave

me prudent advice and lighted me to the right way of research. I would not have been able to achieve
my work without him.

I am very grateful to Prof. Zhenjiang Hu, Dr. Kazuhiko Kakehi, and Prof. Olivier Danvy. Pro-
fessor Hu instructed me in the art of calculational programming with its profound appreciation, and
moreover, he supported me by innumerable inspiring discussions. Dr. Kakehi gave a lesson on at-
tribute grammars and its composition method; besides he gave many pieces of beneficial advice to my
research and its presentation. Professor Danvy introduced to us the TABA work and its relation to
defunctionalization and CPS transformation, and he also cared about the progress of our work and
encouraged us. The basis of my research consists of their instructions.

I am thankful to Mr. Kiminori Matsuzaki, Mr. Tetsuo Yokoyama, Dr. Shin-Cheng Mu, and
Mr. Keisuke Nakano for their insightful discussions that help to improve my research. Mr. Mat-
suzaki gave me an insight about the manipulation of non-linear recursions. Mr. Yokoyama taught me
the comparison of the existing calculational program transformations and their automation. Dr. Mu
showed me another derivation of a TABA program that indicated the characteristics of TABA pro-
grams and IO swapping. Mr. Nakano introduced to me a relationship between attribute grammars
and functional programs with many existing researches.

I thank all members of Takeichi laboratory. I every day discussed with them, laughed with them,
studied with them, played with them, learned from them, chattered with them, researched with them,
and enjoyed with them. Such everything aided and supported me.

Finally I would like to express my thanks again to everyone helped me. Thank you very much.

79

References

[Bac02] Kevin Backhouse. A functional semantics of attribute grammars. In Proceedings of the
8th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’02, pages 142–157, London, UK, 2002. Springer-Verlag.

[Bar84] Hendrik Pieter Barendregt. The lambda calculus: its syntax and semantics, volume 103
of Studies in logic and the foundations of mathematics. North-Holland, 1984.

[BD77] Rod M. Burstall and John Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44–67, 1977.

[BdM96] Richard Bird and Oege de Moor. Algebras of Programming. Prentice Hall, 1996.

[Bir84a] Richard Bird. The promotion and accumulation strategies in transformational program-
ming. ACM Transactions on Programming Languages and Systems, 6(4):487–504, 1984.

[Bir84b] Richard Bird. Using circular programs to eliminate multiple traversals of data. Acta
Informatica, 21:239–250, 1984.

[Bir89] Richard Bird. Algebraic identities for program calculation. Computer Journal, 32(2):122–
126, 1989.

[Bir98] Richard Bird. Introduction to Functional Programming using Haskell. Series in Computer
Science. Prentice Hall, 1998.

[Boi92] Eerke A. Boiten. Improving recursive functions by inverting the order of evaluation.
Science of Computer Programming, 18(2):139–179, 1992.

[CDPR99] Loic Correnson, Etienne Duris, Didier Parigot, and Gilles Roussel. Declarative pro-
gram transformation: A deforestation case-study. In Proceedings of the 1st International
Conference on Principles and Practice of Declarative Programming, PPDP’99, pages
360–377, 1999.

[Chi93] Wei-Ngan Chin. Towards an automated tupling strategy. In Proceedings of the ACM
SIGPLAN symposium on Partial evaluation and semantics-based program manipulation,
PEPM’93, pages 119–132, New York, NY, USA, 1993. ACM Press.

[Chi99] Olaf Chitil. Type inference builds a short cut to deforestation. In Proceedings of the 4th
ACM SIGPLAN International Conference on Functional Programming, ICFP’99, Paris,
France, volume 34(9), pages 249–260. ACM Press, New York, 1999.

[DG02] Olivier Danvy and Mayer Goldberg. There and back again. In Proceedings of the 7th
ACM SIGPLAN International Conference on Functional programming, ICFP’02, pages
230–234. ACM Press, 2002.

81

82 REFERENCES

[DG05] Olivier Danvy and Mayer Goldberg. There and back again. Fundamenta Informaticae,
66(4):397–413, 2005.

[DM93] Pierre Deransart and Jan MaÃluszyński. A grammatical view of logic programming. MIT
Press, Cambridge, MA, USA, 1993.

[dMS01] Oege de Moor and Ganesh Sittampalam. Higher-order matching for program transfor-
mation. Theoretical Computer Science, 269(1–2):135–162, 2001.

[DN01] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Proceedings of the
3rd ACM SIGPLAN international conference on Principles and Practice of Declarative
Programming, PPDP’01, pages 162–174, New York, NY, USA, 2001. ACM Press.

[DPRJ96] Etienne Duris, Didier Parigot, Gilles Roussel, and Martin Jourdan. Attribute grammars
and folds: Generic control operators. Technical Report 2957, INRIA, 1996.

[FJMM91] Maarten M. Fokkinga, Johan Jeuring, Lambert Meertens, and Erik Meijer. A translation
from attribute grammars to catamorphisms. The Squiggolist, 2(1):20–26, 1991.

[Fok89] Maarten M. Fokkinga. Tupling and mutumorphisms. In Squiggolist, volume 1, 1989.

[Fok92] Maarten M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University of Twente,
Dept INF, Enschede, The Netherlands, 1992.

[GG84] Harald Ganzinger and Robert Giegerich. Attribute coupled grammars. In Proceedings of
the of the 1984 SIGPLAN symposium on Compiler construction, pages 157–170. ACM
Press, 1984.

[GHC] The Glasgow Haskell Compiler. Available from http://www.haskell.org/ghc/.

[Gil96] Andrew Gill. Cheap Deforestation for Non-strict Functional Languages. PhD thesis,
Department of Computing Science, Glasgow University, 1996.

[GLPJ93] Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to deforesta-
tion. In Proceedings of the 6th ACM SIGPLAN/SIGARCH International Conference on
Functional Programming Languages and Computer Architecture, FPCA’93, pages 223–
232. ACM Press, New York, 1993.

[Has02] The Haskell 98 Report, 2002. Available from http://www.haskell.org/definition/.

[HIT96] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Deriving structural hylomorphisms
from recursive definitions. In Proceedings of the 1st ACM SIGPLAN International Con-
ference on Functional Programming, ICFP’96, Philadelphia, PA, USA, volume 31(6),
pages 73–82. ACM Press, New York, 1996.

[HIT99] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Calculating accumulations. New
Generation Computing, 17(2):153–173, 1999.

[HITT97] Zhenjiang Hu, Hideya Iwasaki, Masato Takeichi, and Akihiko Takano. Tupling calcula-
tion eliminates multiple data traversals. In Proceedings of the 2nd ACM SIGPLAN In-
ternational Conference on Functional Programming ICFP’97, Amsterdam, The Nether-
lands, pages 164–175. ACM Press, 1997.

REFERENCES 83

[HL78] Gérard P. Huet and Bernard Lang. Proving and applying program transformations
expressed with second-order patterns. Acta Informatica, 11:31–55, 1978.

[Joh87] Thomas Johnsson. Attribute grammars as a functional programming paradigm. In
Proceedings of the 3rd International Conference on Functional Programming Languages
and Computer Architecture, FPCA’87, Portland, Oregon, USA, pages 154–173, 1987.

[Knu68] Donald E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2(2):127–145, 1968.

[KS86] Matthijs F. Kuiper and S. Doaitse Swierstra. Using attribute grammars to derive efficient
functional programs. Technical Report RUU–CS–86–16, Institute of Information and
Computing Sciences, Utrecht University, 1986.

[Küh98] Armin Kühnemann. Benefits of tree transducers for optimizing functional programs. In
Proceedings of the 18th Conference on Foundations of Software Technology & Theoretical
computer Science, FST&TCS’98, pages 146–157, 1998.

[Küh99] Armin Kühnemann. Comparison of deforestation techniques for functional programs
and for tree transducers. In Proceedings of the 4th Fuji International Symposium on
Functional and Logic Programming, FLOPS’99, pages 114–130, 1999.

[LS95] John Launchbury and Tim Sheard. Warm fusion: Deriving build-catas from recursive
definitions. In Proceedings of the 7th ACM SIGPLAN/SIGARCH International Confer-
ence on Functional Programming Languages and Computer Architecture, FPCA’95, La
Jolla, San Diego, CA, USA, pages 314–323. ACM Press, New York, 1995.

[Mei92] Erik Meijer. Calculating Compilers. PhD thesis, Nijmegen University, 1992.

[MFP91] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with ba-
nanas, lenses, envelopes and barbed wire. In Proceedings of the 5th ACM Interna-
tional Conference on Functional Programming Languages and Computer Architecture,
FPCA’91, Cambridge, MA, USA, volume 523, pages 124–144. Springer-Verlag, Berlin,
1991.

[MKHT05a] Akimasa Morihata, Kazuhiko Kakehi, Zhenjiang Hu, and Masato Takeichi. IO swapping
leads you there and back again. In Proceedings of the 7th Generative Programming
and Component Engineering Young Researchers Workshop, GPCE-YRW’05, pages 7–
13, 2005. Extended abstract of Technical Report METR 2005-11 [MKHT05b].

[MKHT05b] Akimasa Morihata, Kazuhiko Kakehi, Zhenjiang Hu, and Masato Takeichi. Reversing
iterations: IO swapping leads you there and back again. Technical Report METR 2005-11,
Department of Mathematical Informatics, University of Tokyo, 2005.

[Nis03] Susumu Nishimura. Correctness of a higher-order removal transformation through a
relational reasoning. In Proceedings of the First Asian Symposium on Programming
Languages and Systems, APLAS’03, volume 2895 of LNCS, 2003.

[Nis04] Susumu Nishimura. Fusion with stacks and accumulating parameters. In Proceedings
of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, PEPM’04, pages 101–112. ACM Press, 2004.

84 REFERENCES

[Rey98] John C. Reynolds. Definitional interpreters for higher-order programming languages.
Higher-Order and Symbolic Computation, 11(4):363–397, 1998. Reprinted from the pro-
ceedings of the 25th ACM National Conference (1972), with a foreword.

[Sar99] João Saraiva. Purely Functional Implementation of Attribute Grammars. PhD thesis,
Department of Computing Science, Utrecht University, 1999.

[SF93] Tim Sheard and Leonidas Fegaras. A fold for all seasons. In Proceedings of the 6th ACM
SIGPLAN/SIGARCH International Conference on Functional Programming Languages
and Computer Architecture, FPCA’93, Copenhagen, Denmark, pages 233–242. ACM
Press, New York, 1993.

[TM95] Akihiko Takano and Erik Meijer. Shortcut deforestation in calculational form. In Pro-
ceedings of the 7th ACM SIGPLAN/SIGARCH International Conference on Functional
Programming Languages and Computer Architecture, FPCA’95, La Jolla, San Diego,
CA, USA, pages 306–313. ACM Press, New York, 1995.

[Voi04] Janis Voigtländer. Using circular programs to deforest in accumulating parameters.
Higher-Order and Symbolic Computation, 17(1-2):129–163, 2004.

[Wad88] Philip Wadler. Deforestation: Transforming programs to eliminate trees. In Proceedings
of the 2nd European Symposium on Programming, ESOP’88, volume 300 of LNCS, pages
344–358. Berlin: Springer-Verlag, 1988.

[Wad89] Philip Wadler. Theorems for free! In Proceedings of the 4th International Conference
on Functional Programming Languages and Computer Architecture, FPCA’89, London,
UK, pages 347–359. ACM Press, New York, 1989.

[YHT05] Tetsuo Yokoyama, Zhenjiang Hu, and Masato Takeichi. Calculation rules for warming-
up in fusion transformation. In Proceedings of 6th Symposium on Trends in Functional
Programming, TFP’05, 2005. To appear.

[Yok06] Tetsuo Yokoyama. Deterministic Higher-order Matching for Program Transformation.
PhD thesis, The University of Tokyo, 2006. To appear.

