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Abstract

Today, computers are very popular and familiar to us. Everything is dealt with
computers, and everyone uses his or her own computer every day. Popularization
of computers calls for methodologies of systematic development of efficient algo-
rithms. Although efficient algorithms are necessary for effective use of computers,
it is difficult for nonspecialist to construct them.

Program calculation is a methodology to develop efficient algorithms systemati-
cally. In program calculation, we develop an efficient program, which represents an
efficient algorithm, in two steps. We first construct a naive but apparently correct
program without taking care of its efficiency, and then, we improve its efficiency by
applying calculational laws, which are mathematically correct program transforma-
tion rules. One strength of program calculation is that the derived program is proved
to be correct by its construction. Since each step of derivation is an application of
a calculational law proved to be correct, the derivation constitutes a proof of the
correctness of the derived program. Another strength is that program calculation is
potentially suitable for automatic implementation. Calculational laws are program
transformation rules, and we can automate calculations by implementing program
transformation systems.

Although program calculation is a good methodology for algorithm construction,
automatic algorithm development on calculations has not been sufficiently carried
through. The most difficult part is the steps in which we should reveal and verify
problem-dependent properties that are hardly seen from its specification.

In this thesis, we report our attempt to develop efficient algorithms automati-
cally. Our idea is to provide “protocols” between us and program transformation
systems. The role of the protocol is to supply the systems with the clue to efficient
algorithms. For this purpose, we develop calculational laws to present the clue to
efficient algorithms to the systems. Then, we design a programming language to uti-
lize the calculational laws. The language is designed so that it clarifies the clue to
efficient algorithms. Then, the system will recognize the clue and derive an efficient
algorithm automatically.

We struggle for two kinds of problems in this thesis: combinatorial optimization
problems and parallelization problems. For both problems, we develop calculational
laws to derive efficient algorithms, design programming languages for automatic im-
plementation of the derivation, and propose systems for obtaining efficient programs
automatically.
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Combinatorial optimization problems are problems to find the optimal one from
a given set of candidates. Since combinatorial optimization problems have a great
many applications, they are recognized to be one of the most important classes of
problems in algorithm construction.

To develop efficient algorithms for combinatorial optimization problems system-
atically, we carefully examine structures of problems, such as structures of enumer-
ating candidates, structures of orders to optimize, and structures of constraint that
solutions should satisfy; then, we propose calculational laws to derive dynamic pro-
gramming algorithms from the structures. We demonstrate the effectiveness of our
calculational laws through derivations of algorithms for constrained shortest path
problems.

We also propose a generic framework for optimal path querying. An optimal
path query is a query to find the optimal path in a graph, where the criterion
of optimality is specified by users. Our optimal path querying system builds on a
domain-specific language to describe criteria of optimality, and from the description,
it generates a program for efficient optimal path querying. By the virtue of a careful
design of the language, the language is expressive enough to describe many practical
problems; moreover, the generated programs are efficient in the sense that they are
a generalization of known efficient algorithms. We also explain our implementation
of the system and report some experiments.

As the latter part, we discuss derivation of efficient divide-and-conquer parallel
algorithms. Developing parallel programs is much harder than developing sequen-
tial programs, and thus, automatic parallelization methods that generate parallel
programs from sequential ones are called for.

We develop a calculational framework for deriving efficient divide-and-conquer
parallel programs. We focus on the third list-homomorphism theorem, which states
that if a list-iterating function can be defined in two certain forms, there exists a
divide-and-conquer parallel algorithm to evaluate the function. We first confirm
effectiveness of the theorem on lists, and after that, we generalize the theorem so as
to deal with tree-iterating functions. The key to the generalization is to recognize
tree-iterating functions as list-iterating functions so as to utilize theories on lists.

We also develop systems for automatic parallelization based on the third list-
homomorphism theorem. We first prepare a programming language to describe
sequential programs that are objects of automatic parallelization. The language
is designed so as to utilize the third list-homomorphism theorem and automatic
theorem proving techniques. Based on the language, we propose two automatic
parallelization systems: one is based on automatic inversion, and the other is based
on generation-and-testing. We report experiments with the systems and discuss
further improvements.
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Chapter 1

Introduction

『どういふわけでうれしい？』といふ質問に対して人は容易にその理由を説
明することができる。けれども『どういふ工合にうれしい？』といふ問に対し
ては何人もたやすくその心理を説明することは出来ない。どんな場合にも、人
が自己の感情を完全に表現しようと思つたら、それは容易のわざではない。こ
の場合には言葉は何の役にもたたない。そこには音楽と詩があるばかりである。

私はときどき不幸な狂水病者のことを考へる。あの病気にかかつた人間は非
常に水を恐れるといふことだ。若しその患者自身がこの苦しい実感を傍人に向
つて説明しようと試みるならば患者自身はどんな手段をとるべきであらう。恐
らくはどのやうな言葉の説明を以てしても、この奇異な感情を表現することは
出来ないであらう。けれども、若し彼に詩人としての才能があつたら、もちろ
ん彼は詩を作るにちがひない。詩は人間の言葉で説明することの出来ないもの
までも説明する。詩は言葉以上の言葉である。

（萩原朔太郎「月に吠える」1序文より抜粋）

Sakutaro Hagiwara (1886–1942), who was a Japanese poet, wrote, “We can easily
explain why we feel, while we can hardly explain how we feel. Words are helpless for
this purpose, and only poems and music can explain our feeling.” I like this sentence.
The world is filled with misunderstanding, prejudice, deception, and so on. We are
always troubled by communication gaps. He pointed out that communication gaps
were inevitable; however, he also pointed out that we human were on a common
ground, which is revealed by artistic works such as poems and music.

By the way, how do we explain our feeling on programming? Are poems and mu-
sic helpful? I believe they aren’t, because programming consists of logical thinking
that can hardly be expressed by poems and music. Then, is mathematics sufficient?
I also think it isn’t, because programming consists of intuitions and passions that can
hardly be read from mathematical expressions by others except for few specialists.
Do you have any idea?

Well, let us consider the way to explain our sense of programming not only to
our friends but also to our computers, which is the theme of this thesis.

1青空文庫: www.aozora.gr.jp.



2 1. Introduction

1.1 Background

Only a few decades ago, we were not accustomed to computers. Computers were
special tools that only specialists used for their specific purposes. In this a few
decades, computers have become powerful and cheap, and have been used for tasks
that had been considered to be unsuitable. Now, computers are very popular and
familiar to us. Everything is dealt with computers, and everyone uses his or her own
computer for her/his own purpose every day.

Although the power of computers has been improved a lot, the effectiveness of
computers still completely depends on the procedures that the computers perform.
Good procedures enable computers to manage huge and complicated works in a
moment, while bad procedures make considerably powerful computers be hulks that
reply no result or wrong results even for trivial works. Good procedures are called
algorithms, and efficient algorithms have been studied for many years.

While many algorithms have been invented for many problems, popularization of
computers calls for much more algorithms. We often encounter our own problems,
which require us to develop our own algorithms. However, it is difficult to develop
efficient algorithms, even though most of our problems might be variants of problems
for which efficient algorithms are known. For developing efficient algorithms, we
need to learn a lot of existing algorithms, understand how they work, choose an
appropriate one, refine it so as to deal with our specific problem, implement it, and
confirm its correctness. In short, constructing efficient algorithms is too difficult for
nonspecialists. Methodologies for systematic development of efficient algorithms are
called for.

1.2 Transformational Program Development

Transformational program development, which was devised in 1970s [CW72,Ger75,
BGW76, Lov76, Weg76, BD77], is a methodology for developing efficient programs
systematically. In transformational program development, we construct an efficient
program in two steps. We first construct a naive but apparently correct program
without taking care of its efficiency; then, we improve efficiency of the program by
applying mathematically correct program transformation rules.

To taste transformational program development, let us develop an efficient pro-
gram to compute variance in a transformational manner. The variance of a set X,
denoted by V [X], is defined as follows,

V [X]
def
=

1

|X|

∑

a∈X

(a− E[X])2

where |X| and E[X] respectively denote the size and the average of X.
Consider the equation above as a program to compute variance. The variance

of X is computed by computing (a − E[X])2 for each element a in X and calcu-
lating their average. Of course this program is correct, because it is the definition
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of variance; however, the program is known to be inefficient a bit. In transforma-
tional program development, we try to discover a more efficient program by using
calculations, as follows.

V [X] = { definition }
1

|X|

∑

a∈X

(a− E[X])2

= { expand the square }
1

|X|

∑

a∈X

(a2 − 2aE[X] + E[X]2)

= { associativity of + }
1

|X|
(
∑

a∈X

a2 −
∑

a∈X

2aE[X] +
∑

a∈X

E[X]2)

= { factorization }
1

|X|
(
∑

a∈X

a2 − 2E[X]
∑

a∈X

a+ E[X]2
∑

a∈X

1)

= {
∑

a∈X 1 = |X| and
∑

a∈X a = |X|E[X] }

1

|X|
(
∑

a∈X

a2 − 2|X|E[X]2 + |X|E[X]2)

= { simplification }

(
1

|X|

∑

a∈X

a2) − E[X]2

We have repeatedly applied mathematical laws, which can be considered as pro-
gram transformation rules, and finally derived another program to compute variance,
which is more efficient than the original one. Notice that the derived program re-
quires minus operation only once, while the original one requires |X| times of minus
operations; in addition, we can evaluate the former in a one-path manner, namely
scanning elements of X once, while the latter is a two-path algorithm, because it is
necessary to compute E[X] in advance.

Transformational program development has several strengths. One is that the
derived program is proved to be correct by its construction. Since each step of
derivation is an application of a program transformation rule that is proved to
be correct, the derivation constitutes a proof of the correctness of the derived
program. Recall the example above. Although the correctness of the equation
V [X] = (

∑
a∈X a)/|X|−E[X]2 is not apparent, the development process is the proof

of its correctness. In usual, when we come across an efficient procedure to solve a
problem, we will suffer for giving a proof of its correctness; besides, our thought
is frequently wrong. Transformational program development enables us to avoid
such troubles. Another strength is that the methodology is potentially suitable for
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automatic implementation. We can implement the development by implementing
program transformations.

One of the drawbacks of transformational program development is the difficulty
in controlling application of program transformation rules. There are many program
transformation rules we may think of, while we must choose an appropriate sequence
of transformation rules for improving a program. Recall the previous derivation
of the efficient program for computing variance. In the first step, we expanded∑

(a−E[X])2 to
∑

(a2−2aE[X]+E[X]2), which declined efficiency; thus, the inverse,
namely factorizing

∑
(a2 − 2aE[X] + E[X]2) to

∑
(a− E[X])2, seems appropriate.

However, the expansion is necessary for deriving the efficient program by factorizing
statically computable parts, namely

∑
1 and

∑
a. This problem is serious for

automatic implementation of transformational developments.

As another example, consider map, which is a higher-order macro [Wad90]2 de-
fined as follows.

mapf ([ ]) = []
mapf ([a] ++ x) = [f(a)] ++ mapf (x)

In the definition, [ ] denotes an empty sequence, [a] denotes a singleton sequence that
consists of an element a, and ++ denotes the concatenation of two sequences. The
macro mapf is parametrized by a function f , and expresses the iteration to apply
the function f to each element in the sequence.

Now, let us derive an efficient program that computes mapf ◦ mapg, where the
operator ◦ is the function composition operator and its definition is (f ◦ g)(x) =
f(g(x)). Here, we would like to use unfolding-folding [BD77] methodology, which
is one of the best-known methods of transformational program development. In
unfolding-folding, we develop an efficient program by, roughly speaking, a sequence
of an unfolding rule that replaces a function call by its body expression, and a folding
rule that replaces an expression by a call of a function having the expression as its
body.

Let us start calculation. By induction, consider the case of computation for the
empty sequence first.

(mapf ◦ mapg)([ ]) = { unfolding ◦ }
mapf (mapg([ ]))

= { unfolding mapg }
mapf ([ ])

= { unfolding mapf }
[ ]

= { folding mapf◦g }
mapf◦g([ ])

2We will not consider higher-order values as a first class citizen in this thesis. Therefore, we
will consider map as a higher-order macro rather than a higher-order function.



1.3. Program Calculation 5

Next, consider the case of nonempty sequences.

(mapf ◦ mapg)([a] ++ x) = { unfolding ◦ }
mapf (mapg([a] ++ x))

= { unfolding mapg }
mapf ([g(a)] ++ mapg(x))

= { unfolding mapf }
[f(g(a))] ++ mapf (mapg(x))

= { folding ◦ }
[(f ◦ g)(a)] ++ (mapf ◦ mapg)(x)

= { induction hypothesis }
[(f ◦ g)(a)] ++ mapf◦g(x)

= { folding mapf◦g }
mapf◦g([a] ++ x)

After all, we obtained a program mapf◦g, which is equivalent to and more efficient
than the original program mapf ◦ mapg.

As similar to the previous example, the most difficult part is the control of
application of rules. Especially, the last step for the case of empty sequence is
strange. We performed the folding of [ ] to mapf◦g([ ]), even though mapf◦g did not
appear in the specification! Such steps are called eureka steps, which are in fact
the keys to efficient programs. Control of unfolding steps is also troublesome. It
was unnecessary to unfold f and g in the calculation above, though the reason was
unclear. What is evident is that we need to control unfolding steps, because repeated
unfolding will cause non-terminating transformations.

1.3 Program Calculation

Program calculation [BdM96] (also called calculational programming) is a style for
achieving transformational program development. In program calculation, we derive
efficient programs by a set of program transformation rules, called calculational laws,
each of which is organized by more primitive program transformation rules such as
unfolding and folding.

As an example, consider the following theorem about map.

Theorem 1.1 (map-map fusion [Bir89]). For any two functions f and g, the follow-
ing equation holds.

mapf ◦ mapg = mapf◦g

By reading the equation as a rewrite rule form the left hand side to the right
hand side, we can recognize Theorem 1.1 as a program transformation rule to fuse
two recursive functions into one. Notice that the theorem does not supply additional
power to the usual unfolding-folding methodology. As demonstrated in the previous
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section, Theorem 1.1 just represents a sequence of unfolding and folding. Even so,
the theorem is effective. First, the theorem is frequently applicable, because map

corresponds to many functions, such as squaring all elements in a sequence, convert-
ing all numbers in a sequence into strings, and so on. Second, it is unnecessary to
worry about the way to control unfolding and folding, once functions in source pro-
grams are recognized as map. In other words, Theorem 1.1 identifies a useful idiom
in transformational program development. From other point of view, the theorem
is a high-level program transformation rule for a high-level programming language
containing map as an additional primitive construct. Such high-level abstraction
by using higher-order macros is the strength of program calculation. High-level
program transformation rules, namely calculational laws, reduce the difficulty to
control manipulation of programs. Furthermore, high-level abstraction is suitable
for algorithm development, which is the objective of this thesis, if we can formalize
algorithmic idioms by calculational laws.

As the next example, let us consider derivation of divide-and-conquer algorithms,
which is one of the main topics of this thesis. Consider another higher-order macro
foldr defined as follows.

foldr⊕,e([ ]) = e
foldr⊕,e([a] ++ x) = a⊕ foldr⊕,e(x)

Given a sequence [a0, a1, . . . , an], foldr⊕,e collapses the sequence into a value by using
a binary operator ⊕, namely foldr⊕,e([a0, a1, . . . , an]) = a0 ⊕ (a1 ⊕ (· · · (an ⊕ e) · · · )).

The macro foldr iterates elements in the sequence one by one. If the operator ⊕
is associative, namely a⊕ (b⊕ c) = (a⊕ b)⊕ c holds, the computation of foldr⊕,e can
be accomplished in another manner.

Theorem 1.2 ([Bir87]). For an associative operator ⊕, the following equation holds.

foldr⊕,e(x++ y) = foldr⊕,e(x) ⊕ foldr⊕,e(y)

The equation in Theorem 1.2 means that we can compute the value of foldr⊕,e

for a long list x ++ y by computing the values of the left part (foldr⊕,e(x)) and the
right part (foldr⊕,e(y)) independently and merging them. Therefore, Theorem 1.2
is a calculational law to derive divide-and-conquer algorithms. Divide-and-conquer
is an important computation pattern, especially because it is suitable for parallel
computation. Independent subproblems, foldr⊕,e(x) and foldr⊕,e(y) in this case, can
be computed in parallel when plural processors are available.

Like this, calculational laws can formalize the derivation of useful algorithm
patterns. Then, we can perform transformational development of efficient algo-
rithms in ease. There have been many studies for formalizing effective calcula-
tional laws [Bir84,BdM93a,BdM93b,dM95,Cur96,Gib96,SHTO00,Cur03,MKHT06,
Gib07], deriving nontrivial algorithms [Bir89,Rav99b,dMG99,dMG00,Bir01,Bir06],
and automating calculations [dMS01,SdM01,Yok06].
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Although program calculation is a good methodology for algorithm construction,
it is yet not easy enough for nonspecialists. Derivation of efficient algorithms still
requires eureka steps in general, in which we need to reveal secret problem-dependent
properties that are hardly seen from the description of the program.

Consider deriving a divide-and-conquer algorithm for computing polynomial
function. Given a value C and a sequence [a0, a1, . . . , an] representing coefficients,
the function polyC([a0, a1, . . . , an]) = a0 + a1C

1 + · · · + anC
n computes the value of

polynomial. It is not difficult to specify the function polyC by foldr.

polyC

def
= foldr⊘,0

a⊘ r = a+ r × C

The definition above corresponds to Horner algorithm. Now we would like to confirm
associativity of the operator ⊘ for utilizing Theorem 1.2. However, the operator ⊘
does not satisfy associativity, and we get stuck.

This standstill is a typical situation we face in developing efficient algorithms
calculationally. In such cases, we need to work out a program satisfying certain
properties, namely associativity in this case. In fact, we can derive a divide-and-
conquer algorithm for computing polynomials by using some tricks.

polyC = { definition }
foldr⊘,0

= { introducing π1(a, b)
def
= a, where let a⊖ (r, c)

def
= (a+ r × C,C × c) }

π1 ◦ foldr⊖,(0,1)

=

{
extracting map, where let fC(a)

def
= (a, C)

and (a′, c′) ⊗ (r, c)
def
= (a′ + r × c′, c′ × c)

}

π1 ◦ foldr⊗,(0,1) ◦ mapfC

Each step is not very difficult to confirm, while both of the last two steps are eureka
steps. After that, the main part, foldr⊗,(0,1), computes a pair of values. Then,
strangely enough, the operator ⊗ is associative, though it is nontrivial to verify
the associativity. Then, Theorem 1.2 enables us to derive a divide-and-conquer
algorithm for computing polynomial function,

As seen, use of calculational laws often requires certain properties, which is gen-
erally latent. Therefore, it is necessary to verify the properties or work out programs
that satisfy the properties. Besides, necessity of latent properties brings additional
difficulty. The guideposts to show the way to improve efficiency is hidden behind the
latent properties. For example, we happily derive divide-and-conquer algorithms if
associativity is visible; however, if associativity is latent, it is out of reason to make
an attempt to derive divide-and-conquer algorithms, even if it is effective in truth.
Therefore, we should provide a good strategy to control applications of calculational
laws, as similar to the case of the unfolding-folding methodology. In summary, it
is still difficult for nonspecialists to obtain efficient algorithms based on program
calculation.
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1.4 Automatic Algorithm Construction based on

Languages

Our goal is to develop effective and useful methods for algorithm construction. We
hope that our calculations will derive a lot of efficient algorithms fully automatically.
However, as seen, automatic derivation of efficient algorithms is generally truly
difficult, because it is necessary to reveal latent properties. To resolve the difficulty,
it should be essential for us to cooperate with program transformation systems.
Then, the problem raised is the communication gap. How can we convey our insight
to the systems and get the systems deriving efficient algorithms? How can the
systems interpret our vague insight and carry out the derivation?

In my opinion, only languages help us to make our vague insight concrete and
convey it to our systems. Of course, existing language would not be applicable for
this purpose. It is necessary to develop languages and provide “protocols” between
us and systems.

Now let us introduce our approach. Our approach consists of two steps. First, we
prepare a “protocol” to program transformation systems so as to supply the systems
with the clue to efficient algorithms. For this purpose, we develop calculational laws
that enable us to present the clue to the systems. Next, we design a programming
language to utilize the calculational laws. The language is designed so that it clari-
fies the clue to efficient algorithms. In the language, we may be required to write a
bit bothersome program to make the clue explicit; however, necessity of such addi-
tional effort is natural, because efficient algorithms require more insight than naive
algorithms. After that, the system will recognize the clue and derive an efficient
algorithm automatically. Such a framework is useful even for hand-development
of efficient algorithms, because finding and utilizing such clues is the wisdom for
algorithm development.

To see our approach, recall the derivation of a divide-and-conquer algorithm
for polyC , the function computing polynomial. Although Theorem 1.2 certainly
expresses the key to divide-and-conquer algorithms, namely associativity, it is not
suitable for automatic implementation. The theorem provides no method for veri-
fying or revealing associativity, and there is nothing we can do if associativity does
not hold. Instead of it, we would like to make use of the third list-homomorphism
theorem3, which we will introduce in Chapter 6. The theorem states that a func-
tion on a sequence can be computed in a divide-and-conquer manner if and only
if there exist two sequential programs that respectively scan the sequence leftward
and rightward, and compute the value of the function.

Previously we have introduced the definition of polyC by using foldr, and here

3Note that this theorem have been called the third homomorphism theorem in calculational
programming community. However, a theorem having the same name is known in the group
theory. To avoid conflict between them, we will call it “the third list-homomorphism theorem” in
this thesis.
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we repeat it in a foldr-less style.

polyC([ ]) = 0
polyC([a] ++ x) = a+ polyC(x) × C

The program above computes the value of polyC([a] ++ x) from the value of right
part of the sequence, polyC(x); thus, this is a leftward definition. The third list-
homomorphism theorem indicates that a leftward definition is insufficient for deriv-
ing a divide-and-conquer algorithm. Therefore, we consider a rightward definition
of polyC , and think of the following one, where the function length computes the
length of a sequence.

polyC([ ]) = 0
polyC(x++ [a]) = polyC(x) + a× C length(x)

This program corresponds to the straightforward computation of polynomials, and
computes the value of polyC(x++[a]) in a rightward manner.What is important is that
the rightward program uses an auxiliary function length. Then, roughly speaking,
the theorem proves that the information of length is necessary for a divide-and-
conquer algorithm of polyC . Recall the following strange program that we have used
for deriving a divide-and-conquer algorithm of polyC .

polyC = π1 ◦ foldr⊗,(0,1) ◦ mapfC

π1(a, b) = a
(a′, c′) ⊗ (r, c) = (a′ + r × c′, c′ × c)
fC(a) = (a, C)

In fact, it is C length(x) that is retained in the second component of (foldr⊗,(0,1) ◦
mapfC

)(x) and exactly corresponds to the information of length. In other words, the
information of length is certainly the clue to derive a divide-and-conquer algorithm
in this case. In summary, the third list-homomorphism theorem is useful for deriving
divide-and-conquer algorithms, because it enables us to find the clue.

Next, we would like to automate such derivations by designing a language for au-
tomatic derivation of divide-and-conquer algorithms. The third list-homomorphism
theorem indicates that it is effective to write two programs, namely leftward and
rightward programs, because it enables us to reveal information necessary for de-
riving divide-and-conquer algorithms. In addition, it would be useful to design a
language that ease the difficulty to verify associativity of the derived operator. Based
on these observations, we will propose a language for automatic parallelization to-
gether with automatic parallelization algorithms in Chapter 7.

As explained, we will design languages so as to utilize calculational laws to derive
efficient algorithms. Note that the languages will be domain-specific languages rather
than general-purpose languages, on one hand, because it is difficult to derive efficient
algorithms for general problems. Instead, our languages provide characterizations of
classes in which deriving efficient algorithms is relatively easy. On the other hand,



10 1. Introduction

our languages should have the ability to solve a large class of practical problems,
otherwise the languages are useless. In summary, most important requirements for
our languages are the following two.

• Effectiveness: the language enables us to generate efficient programs for solving
problems described; in other words, the language raises sufficient information
for utilizing powerful calculational laws.

• Expressiveness: we can describe a large class of practical problems by the
language; in addition, it is desirable that writing programs by the language or
compiling programs into the language is easy.

1.5 Contributions and Organization of the Thesis

We struggle for two kinds of problems in this thesis: combinatorial optimization
problems and parallelization problems. Thus, this thesis consists of two main parts.
After Chapter 2, where we prepare basic definitions, we discuss systematic derivation
of efficient algorithms for combinatorial optimization problems. Next, as the second
part, we consider systematic derivation of divide-and-conquer parallel algorithms,
and lastly, we conclude this thesis and discuss directions of further research in Chap-
ter 8. In both parts, we develop calculational laws to derive efficient algorithms,
design programming languages for automatic implementation of the derivation, and
construct systems for deriving efficient programs automatically.

Let us overview the two main parts.
Combinatorial optimization problems are the theme of the first part, which con-

sists of Chapters 3, 4, and 5. Combinatorial optimization problems are problems to
find the optimal solution among those satisfy certain requirements. Since combina-
torial optimization problems have a great many applications, they are recognized to
be one of the most important classes of problems in algorithm construction.

In Chapter 3, we review existing calculational studies about combinatorial op-
timization problems. On one hand, Bird, de Moor, and Curtis [BdM93b,BdM93a,
dM95, BdM96, Cur96, Cur03] studied calculational characterization of efficient al-
gorithms for combinatorial optimization problems, and their studies are summa-
rized as some calculational laws, called greedy theorems. While greedy theorems
provide a generic characterization for efficient algorithms, it is not suitable for
automatic implementation. The theorems require orders satisfying certain prop-
erties, and such orders are difficult to find in general. On the other hand, it
was proved that a class of combinatorial optimization problems, called maximum
marking problems, is efficiently solvable once the problem is specified in certain
forms [ALS91, BPT92, SHTO00]. However, the results about maximum marking
problems are not sufficiently generic. They cannot deal with a lot of important
problems such as problems concerning graphs.

In Chapter 4, we develop calculational laws that are both generic and imple-
mentable. We focus on structures of problems, such as structures of enumerating
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candidates, structures of orders to optimize, and structures of constraint that solu-
tions should satisfy; then, we can develop efficient algorithms in ease on the struc-
tures. As a summary, we propose calculational laws to derive dynamic programming
algorithms. The laws correspond to a generalization of the known results about
maximum marking problems. We demonstrate the effectiveness of our calculational
laws through derivations of algorithms for several problems including shortest path
problems and their variants.

In Chapter 5, we concentrate on the optimal path querying problem. An optimal
path query is a query to find the optimal path in a graph, where the criterion of
optimality is specified by users. We propose a system for optimal path querying
based on the result shown in Chapter 4. The system builds on a domain-specific
language to describe optimal path queries, and from the criterion of optimality
written in the language, it generates a program for efficient optimal path querying.
By the virtue of a careful design of the language, the language is expressive enough
to describe many practical problems; moreover, the generated programs are efficient
in the sense that they correspond to a generalization of known efficient algorithms.
We also explain our implementation of the system and report some experiments.

In the second part, which consists of Chapters 6 and 7, we discuss derivation
of efficient divide-and-conquer parallel algorithms. Developing parallel programs
is much more difficult than developing sequential programs, and thus, we seek for
automatic parallelization methods that generate parallel programs from sequential
programs. While there have been a lot of studies for systematic development of
parallel programs, few studies exist for automatic parallelization of complex reduc-
tions and scanning computations. Efficient divide-and conquer parallel algorithms
for reductions or scanning computations require certain properties on operations
that merge the results of subproblems, and the properties disturb automatic paral-
lelization.

In Chapter 6, we develop a calculational framework for deriving efficient divide-
and-conquer parallel programs. We consider that it is too difficult to obtain a
parallel program from a sequential program; instead, we attempt to obtain a par-
allel program from two sequential programs. In fact, the third list-homomorphism
theorem [Gib96], which is a fork theorem in the community of program calculation,
states that if a list-iterating function can be defined in two certain forms, there exists
a divide-and-conquer parallel algorithm to evaluate the function. We first confirm
effectiveness of the theorem. After that, we generalize the theorem so as to deal with
tree-iterating functions. The key to the generalization is to simulate computations
on trees by list-iterating computation so that we can utilize theories on lists.

In Chapter 7, we develop systems for automatic parallelization based on the third
list-homomorphism theorem. We first prepare a programming language to describe
sequential programs that are objects of automatic parallelization. The language
is designed so as to utilize the third list-homomorphism theorem and automatic
theorem proving technique. Based on the language, we propose two automatic
parallelization systems: one is based on automatic inversion, and the other is based
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on generation-and-testing. We report experiments with the systems and discuss
further improvements.

1.6 Related Works

We will study automatic algorithm construction based on program calculation. Here,
we would like to discuss relationships to the existing works concerning systematic
algorithm construction, and later we will discuss those concerning each detailed
topic, including works based on program calculation.

There are very many studies about transformational program development, and
Pettorossi and Proietti [PP96] carried out an extensive survey of this topic.

Unfolding-folding, first formalized by Burstall and Darlington [BD77], is one
of the best-known methods for transformational program development. Unfolding-
folding is a generic method, and the key issue is the control of application of unfolding
steps and folding steps. We need to provide a strategy to identify which function
we should perform unfolding and when we should perform folding by introducing
appropriate definition of a new function. There are many studies to provide a good
strategy, and Sørensen et al. [SGJ94] gave a comparison of some of then. Partial
evaluation [JGS93, Jon96] is one of the most successful approaches to give a good
strategy for unfolding-folding. In partial evaluation, we consider transforming a
general-purpose program to a specialized one from given static inputs. The unfolding
steps are controlled so that static computations for the static inputs will be fixed
into static values. A strong point of partial evaluation is that it is very suitable for
automatic implementations. Many studies showed that partial evaluation techniques
automatically derived efficient programs for many problems, as reported in a survey
by Jones [Jon96].

Another successful study is the sequence of works by Paige et al. [Pai83,CP89,
PY97], which is sometimes referred as finite differencing, the program transforma-
tion rule centered around. In Paige’s method, we first specify the problem by a high-
level language that consists of set-based fixed-point operations, derive an iterative
program by transforming fixed-point operations into loops, improve efficiency of the
loops by replacing costly set-based operations by incremental operations, and com-
pile it into efficient codes by selecting appropriate data structure for implementing
sets. As a complete example, see Liu and Yu [LY02] that demonstrated effectiveness
of the method by deriving efficient implementation of regular path querying. As
the same as partial evaluation, a strong point of Paige’s method is that it is imple-
mentable; besides, and different from unfolding-folding, the method consists of only
three steps and it is unnecessary to worry about the control of the transformation
steps.

As a price of implementable formalization, these methods tend to derive efficient
low-level implementations of generic programs, rather than improving algorithms on
high-level languages. Therefore, they are not suitable for the purpose of this thesis,



1.6. Related Works 13

while they will be effective for providing efficient implementations for programs
derived by our methods.

From the algorithmic viewpoint, our study can be seen as a variant of those
providing generic algorithms for a set of problems. In our approach, we first pick
up an algorithm pattern and formalize a calculational law that shows a way to solve
a set of problems by the algorithm pattern. In other words, the calculational law
forms a generic algorithm for a set of problems. There are quite many good studies
for giving generic algorithms, and especially, the studies about matroids and their
variants [Whi35,Edm71,Fra81,KL81,HMS93] provide generic ways to solve a large
set of combinatorial optimization problems efficiently. One of the most distinctive
parts of our study is that we intensively consider automatic reduction into the generic
algorithms. Even if an algorithm is very generic and efficient, nonspecialists cannot
utilize it unless they can easily reduce their problems into problems solved by the
algorithm. We design languages for implementing automatic reduction into generic
algorithms so as to nonspecialists can utilize our results. One of the our ideals is the
linear programming [Chv83]. No knowledge about theories of linear programming
is necessary for using linear programming solvers, and it is sufficient to specify
problems by providing a set of inequalities and equations.





Chapter 2

Basis of Program Calculation

In this chapter, we introduce basic definitions and notions used in this thesis. We
borrow many basic notions from relational calculus by Bird and de Moor [BdM96]
and functional programming language Haskell [Pey03].

2.1 Basic Definitions

Sets

We use a pair of curly brackets to denote a set1. For example, {3} denotes a set
that consists of 3, and {1, 4, 6} denotes a set that consists of 1, 4, and 6. The empty
set is denoted by ∅. A set of all subset of A is denoted by 2A. Basic operators

for sets, such as ∪, ∩, and × are defined as usual: A ∩ B
def
= {a | a ∈ A ∧ a ∈ B},

A∪B
def
= {a | a ∈ A ∨ a ∈ B}, and A×B

def
= {(a, b) | a ∈ A ∧ b ∈ B}. The size of a

set S is denoted by |S|, or just by S if it is not ambiguous. The function {·} takes
an element and returns the singleton set containing the element.

The set of Boolean values is denoted by Bool , namely Bool
def
= {True,False}.

The set of all natural numbers, the set of all integers, the set of all non-negative
integers, and the set of all real numbers are respectively denoted by N, Z, Z+, and
R. The set that contains only one element () is denoted by 1.

Relations and Functions

Relation is a set of pairs. For sets A and B, R is said to be a relation between
A and B if R ⊆ A × B; if so, we write R : B ↔ A. We may write x R y instead
of (x, y) ∈ R. The identity relation on a set A is denoted by idA : A↔ A, i.e.,

idA
def
= {(a, a) | a ∈ A}. The subscript may be omitted if it is apparent from its

1We only consider small sets, namely sets in a specified universe, to avoid dealing with sets of
sets. For the same reason, we do not consider higher-order functions or higher-order relations in
this thesis.
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context. The converse of a relation R : A↔ B is denoted by R◦ : B ↔ A, which is
defined as follows.

R◦ def
= {(b, a) | (a, b) ∈ R}

A relation f :B ↔ A is said to be a function if it is simple, that is, the following
property holds.

((a, b1) ∈ f ∧ (a, b2) ∈ f) ⇒ b1 = b2

The property is equivalent to the following point-free style inequality.

f ◦ f ◦ ⊆ id

In such case, we write f :B → A to explicitly denote that f is a function, and write
f(b) = a instead of (a, b) ∈ f or af b. Parentheses that stand for function application
may be omitted. If a function f :A→ B is total, namely ∀a ∈ A : ∃b ∈ B : f(a) = b
holds, then f is called a total function2. A function may be called a partial function
if it is not total. A total function that yields a Boolean value is called a predicate.
A function f is said to be injective if f ◦ is a function. A total injective function is
called bijective.

As usual in functional programming, we may define functions by a set of equa-
tions, each of which may consist of variables. The underscore − abbreviates a
variable having a distinguishable name, and means that we will not care values
bound to the variable. For notational convenience, we may use equations whose
left hand sides have overlapping domains, and in such cases, former equations
have higher priority. For example, multiplication function on non-negative integers

mult :(Z+ × Z+) → Z+ can be defined by the following two equations: mult(0,−)
def
= 0

and mult(n,m)
def
= m+ mult(n− 1,m).

Tuples

Given an natural number i, πi denotes the projection of the ith element from a

tuple, i.e., πi(a1, . . . , ai, . . . , ak)
def
= ai where k ≥ i. An operator (− △ −) is used to

construct pairs, and its definition is the following.

(R △ S)
def
= {((b, c), a) | (b, a) ∈ R ∧ (c, a) ∈ S}

Another operator (−×−) is also related to tuples, and defined as follows.

(R× S)
def
= {((c, d), (a, b)) | (c, a) ∈ R ∧ (d, b) ∈ S}

We use binary operators such as ↑, ⊕, and ⊘ to denote functions that take a
tuple as their arguments. In short, a⊕ b = c is equivalent to (⊕)(a, b) = c.

2Note that the definition of functions is different from that of Bird and de Moor [BdM96]. They
define a function as a simple and total relation.
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Tagged Sums

The tagged sum (which can be seen as “disjoint sum”) of two sets A and B is denoted

by A+B, whose definition is A+B
def
= ({True} ×A)∪ ({False} ×B). We will use

L and R for shorthands of tagged elements, i.e., L(a) and R(b) respectively denote
(True, a) and (False, b). As similar to the case of pairs, two operators (− △−) and
(− + −) are related to tagged sums, and defined as follows.

(R △S)
def
= {(a, L(b)) | (a, b) ∈ R} ∪ {(a,R(b)) | (a, b) ∈ S}

(R + S)
def
= {(L(a), L(b)) | (a, b) ∈ R} ∪ {(R(a),R(b)) | (a, b) ∈ S}

Sequences

We use a pair of brackets split by commas to denote a sequence, which is also called
a list. Given a set A, A∗ denotes a set of all sequences whose each element is an
elements of A. The empty sequence is denoted by []. The concatenation of two

sequences is denoted by ++, i.e., [x0, . . . , xn]++[y0, . . . , ym]
def
= [x0, . . . , xn, y0, . . . , ym].

Graphs

A graph G = (V,E) consists of a set of vertexes V and a set of edges E. Functions
hd :E → V and tl :E → V respectively yield the startpoint and the endpoint of an
edge. Each edge has weights specified by weight functions. Given an alphabet Σ, a
graph G = (V,E) is said to be labeled by Σ when a labeling function l : E → Σ is
specified. For a weight function w, a labeling function l, and a sequence of edges x,
l(x) and w(x) respectively stand for the label and the weight of x, as usual.

A sequence of edges [a0, a1, . . . , an] ∈ E∗ is said to be a path if tl(ak) = hd(ak+1)
holds for all 0 ≤ k < n. A function dst : E∗ → (V ∪ 1) takes a path and returns its

destination, and its definition is dst([ ])
def
= () and dst(x++ [a])

def
= tl(a).

Basic knowledge about standard graph algorithms are assumed, and refer to
textbooks such as [CSRL01,KT05] if necessary.

Basic Functions

We will use several standard functions in Haskell, and their definitions are summa-
rized in Figure 2.1. In addition to them, we use ↑ and ↓ to denote binary maximum
and minimum operators respectively.

2.2 Operators and Laws for Manipulating Rela-

tions and Functions

In program calculation, functions and relations are respectively used to express de-
terministic and nondeterministic computations. Some operators are used to express
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wrap(a)
def
= [a]

tails([ ])
def
= [[]]

tails([a] ++ x)
def
= [[a] ++ x] ++ tails(x)

inits([ ])
def
= [[]]

inits(x++ [a])
def
= inits(x) ++ [x++ [a]]

consta(−)
def
= a

mapf ([ ])
def
= []

mapf ([a] ++ x)
def
= [f(a)] ++ mapf (x)

foldr⊕,e([ ])
def
= e

foldr⊕,e([a] ++ x)
def
= a⊕ foldr⊕,e(x)

foldl⊗,e([ ])
def
= e

foldl⊗,e(x++ [a])
def
= foldl⊗,e(x) ⊗ a

scanr⊕,e([ ])
def
= [e]

scanr⊕,e([a] ++ x)
def
= [foldr⊕,e([a] ++ x)] ++ scanr⊕,e(x)

scanl⊗,e([ ])
def
= [e]

scanl⊗,e(x++ [a])
def
= scanl⊕,e(x) ++ [foldl⊕,e(x++ [a])]

Figure 2.1. Definitions of standard functions

combinations or relationship of functions and relations.
Given a relation R, the domain of a relation R, denoted by dom(R), is defined by

dom(R)
def
= {b | (a, b) ∈ R}. Similarly, the range of a relation R, denoted by ran(R),

is defined by ran(R)
def
= {a | (a, b) ∈ R}.

The binary operator ◦ denotes the composition of relations, and it is defined as
follows:

R ◦ S
def
= {(c, a) | ∃b ∈ B : (c, b) ∈ R ∧ (b, a) ∈ S}

It is worth noting that the operator ◦ is associative. To denote repeated compositions
of the same relation, we borrow the power notation, i.e., given a relation R :A↔ A,

R0 def
= idA and Rn def

= R ◦Rn−1 for n ∈ N.
The operator denotes the negation of a relation, and it is defined as follows.

a R b
def
⇐⇒ ¬(a R b)

The operator ∩ is used to express a conjunction of two relations. The following
is the definition of ∩, which is nothing but the usual intersection operator when we
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recognize relations as sets.

a (R ∩ S) b
def
⇐⇒ a R b ∧ a S b

The operator ∩ can be characterized by the following property.

(R ∩ S) ⊇ X ⇔ (R ⊇ X) ∧ (S ⊇ X)

Similar to ∩, we define a disjunction operator ∪ as follows.

a (R ∪ S) b
def
⇐⇒ a R b ∨ a S b

The operator ∪ is characterized by the following property.

(R ∪ S) ⊆ X ⇔ (R ⊆ X) ∧ (S ⊆ X)

The operator ⇒, corresponding to the logical implication, is defined as follows.

a (R ⇒ S) b
def
⇐⇒ a R b ∨ a S b

Its characteristic property is the following.

(R ⇒ S) ⊇ X ⇔ S ⊇ (R ∩X)

Note that in our setting, the operators for relations satisfy laws that logical operators
satisfy, such as the double negation elimination law and the De Morgan law.

We will use the right-division operator /, which introduces “for all” quantifica-
tion.

a (R/S) b
def
⇐⇒ ∀c : b S c⇒ a R c

Its axiomatic definition is the following.

R/S ⊇ X ⇔ R ⊇ (X ◦ S)

From the definition, / operator is anti-monotonic to the right operand.
The operator Λ, called power transpose, is used to transform a nondeterministic

computation into a deterministic computation that generates all possible solutions.

ΛR(a)
def
= {b | (b, a) ∈ R}

The power transpose operator is characterized by the following equation.

S = ∈ ◦ ΛS

Given a predicate p : A→ Bool , the filtering function raised by p is denoted by
p△ : 2A → 2A. Its definition is the following.

p△(X)
def
= {a | a ∈ X ∧ p(a)}

Similarly, the filtering relation p? : A↔ A is defined as follows.

a p? a
def
⇐⇒ p(a)

The function p△ and the relation p? satisfies p△ = Λ(p? ◦ ∈).
Later we will make intensive use of right inverses.
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Definition 2.1 (right inverse). A function f : B → A is said to be a right inverse
of a relation R : A↔ B if R ◦ f ◦R = R holds.

To show explicitly that a function is a right inverse of R, we will write the
function as R•. Note that more than one right inverses may exist for a relation.
The converse of R is not a right inverse of R and only an inequality R• ⊆ R◦ holds,
because that R◦ may not be a function; in other words, R• is a refinement of R◦

into a function.
For total functions, some useful properties are known. We will use the following

properties [BdM96], where R and S are relations and f is a total function.

Λ(S ◦ f) = ΛS ◦ f (2.2)

(f ◦R ⊆ S) ⇔ (R ⊆ f ◦ ◦ S) (2.3)

(R ◦ f ◦ ⊆ S) ⇔ (R ⊆ S ◦ f) (2.4)

2.3 Functors and Relators

We borrow some notions from the category theory.
A category consists of objects and morphisms. In this thesis, we consider only

two kinds of categories. One is the category of Set , where objects are sets and
morphisms from an object A to an object B are total functions from a set A to a
set B. The other is the category of Rel , where objects are sets and morphisms from
an object A to an object B are relations between a set A and a set B.

A functor is a morphism of categories. For two categories A and B, a functor
F :A → B maps each object A ∈ A to FA ∈ B and each morphism f ∈ A to Ff ∈ B,
with satisfying the following properties.

F(idA) = idB

F(f ◦ g) = Ff ◦ Fg

An example of functors is the power-set functor P whose definition is P(A)
def
= 2A

and Pf(X)
def
= {f(a) | a ∈ X}.

A functor is said to be polynomial if it is constructed by the combinations of
the identity functor I, the constant functor !B where B is a parameter, the product
bifunctor ×, and the coproduct bifunctor +. The definition is the following, in which
F and G denote functors, A and B denote objects, and f denotes a morphism of
appropriate type.

IA
def
= A If

def
= f

!BA
def
= B !Bf

def
= idB

(F × G)A
def
= (FA× GA) (F × G)f

def
= (Ff ×Gf)

(F + G)A
def
= FA+ GA (F + G)f

def
= (Ff + Gf)
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The least fixed point of a functor F, denoted by µF, is the smallest set that
satisfies an equation F(µF) = µF. The least fixed point exists for each polynomial
functor. It is well known that the least fixed points of polynomial functors provides
a good characterization of a large class of algebraic data structures [MFP91,Fok92,
Mei92,BJJM99], and such data structures are called polynomial data structures.

As an example, let us consider binary trees retaining natural numbers in their
internal nodes.

data TreeN = Leaf
| Node(N,TreeN,TreeN)

To capture this structure by the least fixed point of a functor, consider the following
polynomial functor T.

T = !1 + !N × (I × I)

Interpret L() as a leaf, Leaf , and R(a, (t1, t2)) where a ∈ N and t1, t2 ∈ µT as an
internal node, Node(a, t1, t2). Then, we can recognize the least fixed point of T as
the set of all node-valued binary trees. Each tree is constructed in a bottom-up
manner, namely from leaves to the root.

Next, consider the following polynomial functor S.

S = !1 + !Z × I

As similar to the case of node-valued binary trees, we can interpret the least fixed
point of S as a set of sequences of integers, where L() and R(a, x) respectively cor-
respond to [ ] and [a] ++ x. In other words, µS corresponds to the set of sequences of
integers, in which each sequence is constructed from an empty sequence by repeat-
edly adding an element to its left.

In the category Rel , not all functors are useful for calculations, and we only
consider relators.

Definition 2.5 (relator). A functor F is said to be a relator if it respects inclusions,
that is, R ⊆ S implies FR ⊆ FS for any relations R and S.

Actually most of the useful functors in computer science are relators. For ex-
ample, the powerset functor is a relator. Polynomial functor are also relators. It is
known [BdM96] that relators respect converses, namely F(R◦) = (FR)◦.

Let us see relationships between relators and relation-manipulating operators.
First, consider the operator ∩. As the following lemmas show, relators do not

satisfy distributivity over ∩ in general, while polynomial functors do.

Lemma 2.6. For any relator F and relations R and S, F(R ∩ S) ⊆ FR ∩ FS holds.

Proof.

F(R ∩ S) ⊆ (FR ∩ FS) ⇔ { property of ∩ }
(F(R ∩ S) ⊆ FR) ∧ (F(R ∩ S) ⊆ FS)

⇐ { relator }
((R ∩ S) ⊆ R) ∧ ((R ∩ S) ⊆ S)

⇔ { trivial (∩) }
True
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Lemma 2.7. For any polynomial functor F and relations R and S, F(R ∩ S) =
FR ∩ FS holds.

Proof. It is a direct consequence of Propositions 6.3.10 and 5.3.9 in [dM92].

Different from ∩, relators do not satisfy distributivity over ∪, even if they are
polynomial.

Lemma 2.8. For any relator F and relations R and S, FR ∪ FS ⊆ F(R ∪ S) holds.

Proof.

(FR ∪ FS) ⊆ F(R ∪ S) ⇔ { property of ∪ }
(FR ⊆ F(R ∪ S)) ∧ (FS ⊆ F(R ∪ S))

⇐ { relator }
(R ⊆ (R ∪ S)) ∧ (S ⊆ (R ∪ S))

⇔ { trivial (∪) }
True

Nothing interesting is known about relationship between relators and the ⇒
operator in general. But, for polynomial functors, the following lemma holds.

Lemma 2.9. For any polynomial functor F and relations R and S, F(R ⇒ S) ⊆
FR ⇒ FS holds.

Proof.

F(R ⇒ S) ⊆ (FR ⇒ FS) ⇔ { property of ⇒ }
(F(R ⇒ S) ∩ FR) ⊆ FS

⇔ { Lemma 2.7 }
F((R ⇒ S) ∩R) ⊆ FS

⇐ { relator }
((R ⇒ S) ∩R) ⊆ S

⇔ { property of ⇒ }
True

Following lemmas show relationships between right-division and relators.

Lemma 2.10. For any relator F and relations R and S, F(R/S) ⊆ FR/FS holds.

Proof.

F(R/S) ⊆ FR/FS ⇔ { property of / }
(F(R/S) ◦ FS) ⊆ FR

⇔ { functor }
F((R/S) ◦ S) ⊆ FR

⇐ { relator }
((R/S) ◦ S) ⊆ R

⇔ { property of / }
True
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Lemma 2.11 (Lemma 8.3.1.2 in [dM92]). For any polynomial functor F and rela-
tions R and S, F((R/S) ∩ S◦) = (FR/FS) ∩ FS◦ holds.

The following lemma shows a relationship between functors and the power trans-
pose.

Lemma 2.12. For any relator F and relation S, ΛFS = ΛF∈ ◦ FΛS holds.

Proof.

ΛFS = ΛF∈ ◦ FΛS ⇔ { property of Λ }
FS = ∈ ◦ ΛF∈ ◦ FΛS

⇔ { ∈ cancels Λ out }
FS = F∈ ◦ FΛS

⇔ { functor }
FS = F(∈ ◦ ΛS)

⇔ { ∈ cancels Λ out }
FS = FS

2.4 Recursion Schemes and Inductions

In program calculation, recursion schemes, namely the ways to accomplish compu-
tations through recursions, play important roles. Recursion schemes implicate the
way to prove properties by inductions, which are captured by fusion laws.

2.4.1 Automata

A finite state automaton, which represents scanning over sequences, is defined as
follows.

Definition 2.13 (automaton). A finite state automaton (also called NFA, nonde-
terministic finite state automaton) A = (S,Σ, τ, SI , SF ) consists of a finite set of
states S, a finite alphabet Σ, a transition relation τ : (S × Σ) ↔ S, a set of initial
states SI ⊆ S, and a set of finial states SF ⊆ S.

An NFA A = (S,Σ, τ, SI , SF ) is deterministic if τ is a function and SI is a
singleton set. In this case, A is called a deterministic finite state automaton (in
short, DFA).

Given an NFA A = (S,Σ, τ, SI , SF ), the representative relation of A, denoted by
rpA : Σ∗ ↔ S, is defined as follows.

(sn+1, [σ0, σ1, . . . , σn]) ∈ rpA
def
⇐⇒ ∃s0, . . . , sn ∈ S : s0 ∈ SI ∧ (0 ≤ ∀i ≤ n : (si+1, (si, σi)) ∈ τ)

An NFA A = (S,Σ, τ, SI , SF ) accepts a sequence of symbols x ∈ Σ∗ if ΛrpA(x)∩SF 6=
∅ holds. LA ⊆ Σ∗ denotes the set of all sequences that A accepts.
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Given an NFA A = (S,Σ, τ, SI , SF ) and a set of state S ′ ⊆ S, we will write
another NFA (S,Σ, τ, S ′, SF ) by A[S ′] for notational convenience. By definition, the
NFA A[S ′] the same as A except for their initial state.

Many operations are known for automata. One is product construction. Given
two NFAs, product construction derives an NFA that is the composition of two
NFAs in the sense that the derived NFA accepts a sequence if and only if both of
the original two accept it.

Definition 2.14 (product construction). Given two NFAs A = (A,Σ, α, AI , AF )
and B = (B,Σ, β, BI , BF ), the product of A and B is an NFA C = (A×B,Σ, γ, AI ×
BI , AF ×BF ), where γ is defined as follows.

((a′, b′), ((a, b), σ)) ∈ γ
def
⇐⇒ (a′, (a, σ)) ∈ α ∧ (b′, (b, σ)) ∈ β

Lemma 2.15. Given two NFAs A and B, the product of A and B accepts a sequence
x if and only if both A and B accept x.

Proof. Let A = (A,Σ, α, AI , AF ), B = (B,Σ, β, BI , BF ), the product of A and B be
(A×B,Σ, γ, AI ×BI , AF ×BF ), and x = [σ0, σ1, . . . , σn].

x ∈ L(A×B,Σ,γ,AI×BI ,AF×BF )

⇔ { definition of accept }
∃(a0, b0), (a1, b1), . . . (an+1, bn+1) ∈ (A×B) :
(a0, b0) ∈ (AI ×BI) ∧ (an+1, bn+1) ∈ (AF ×BF ) ∧
(0 ≤ ∀i ≤ n : ((ai+1, bi+1), ((ai, bi), σi)) ∈ γ)

⇔ { definition of γ }
∃(a0, b0), (a1, b1), . . . (an+1, bn+1) ∈ (A×B) :
a0 ∈ AI ∧ b0 ∈ BI ∧ an+1 ∈ AF ∧ bn+1 ∈ BF ∧
(0 ≤ ∀i ≤ n : (ai+1, (ai, σi)) ∈ α ∧ (bi+1, (bi, σi)) ∈ β)

⇔ { distributivity of ∀ to ∧ }
(∃a0, . . . an+1 ∈ A : a0 ∈ AI ∧ an+1 ∈ AF ∧ (0 ≤ ∀i ≤ n : (ai+1, (ai, σi)) ∈ α)) ∧
(∃b0, . . . bn+1 ∈ B : b0 ∈ BI ∧ bn+1 ∈ BF ∧ (0 ≤ ∀i ≤ n : (bi+1, (bi, σi)) ∈ β))

⇔ { definition of accept }
x ∈ LA ∧ x ∈ LB

2.4.2 Catamorphisms

Although automata are useful to formalize predicates on sequences, they cannot
cope with generic computations. Catamorphisms [MFP91,Fok92,Mei92,BdM96] are
a more general computation pattern that can express a larger class of computations.

Definition 2.16 (algebra). For a functor F, an F-algebra is a pair (A,ψ), where A
is an object and ψ : FA→ A is a morphism.

Definition 2.17 (algebra morphism). For two F-algebras A = (A,ψ) and B =
(B, φ), an algebra morphism from A to B is a morphism h :A→ B that makes the
following diagram commute.
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FA
ψ

//

Fh
��

A

h
��

FB
φ

// B

Definition 2.18 (initial algebra and catamorphism). An F-algebra (A, inF) is said
to be initial if for each F-algebra (B, φ) there exists a unique algebra morphism
from (A, inF) to (B, φ). The unique morphism is called catamorphism and denoted
by ([φ])F.

The catamorphism ([φ])F is well-defined because the initial F-algebra is unique up
to isomorphism. We may omit subscripts for catamorphisms if they are clear from
their context.

It is known that for each polynomial functor F and each bijective function
f : FµF → µF, (µF, f) forms an initial algebra. Recall that polynomial functors
correspond to tree-like data structures. Since bottom-up stepwise construction of
tree-like structure is a bijective computation, we can recognize initial algebras as
such constructions.

As an example, let us consider catamorphisms on sequences. Recall that se-
quences of integers can be captured by the least fixed point of the polynomial func-

tor S = !1 + !Z × I. Define a function inS : SµS → µS by inS

def
= (const[ ]

△cons), where

cons : (Z,Z∗) → Z∗ is defined by cons(a, x)
def
= [a] ++ x. Then, since inS is bijective,

(µS, inS) forms an initial S-algebra. Next, consider a catamorphism ([φ])S, where
φ = (b △f), where b : 1 → A and f : (Z, A) → A are given functions. Since inS is
bijective, ([φ])S satisfies an equation ([φ])S = φ ◦ S([φ])S ◦ inS

◦; thus, ([φ])S can be seen
as the following recursive function.

([φ])S([ ]) = b()
([φ])S([a] ++ x) = f(a, ([φ])(x))

For example, ([(const1

△succ)])S where succ(a, n)
def
= 1+n corresponds to the function

to compute the length of a list, and ([(const[ ]

△cons ◦ (f × id))])S corresponds to the
function mapf . It is worth noting that catamorphisms on lists is equivalent to
functions written by foldr, namely foldr⊕,e corresponds to ([(conste

△(⊕))])S.
As another example, let us consider catamorphisms on node-valued binary trees,

which are characterized by the least fixed point of the polynomial functor T =

!1 + N× (I× I). Let inT :TµT → µT be a function such that inT

def
= (constLeaf

△node)

where node(a, (t1, t2))
def
= Node(a, t1, t2). Then, (µT, inT) forms an initial algebra,

and a catamorphism ([(l △f)])T corresponds to the following bottom-up recursive
function.

([(l △f)])T(Leaf ) = l()
([(l △f)])T(Node(a, (t1, t2))) = f(a, (([(l △f)])T(t1), ([(l

△f)])T(t2)))
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For example, ([(const0

△add)]) where add(a, (x, y)) = a + x + y corresponds to a
function that sums up the values of all elements in a tree.

As seen, catamorphisms express bottom-up computations on tree-like structures.
Since the structure of recursive calls is inductive, induction is effective for proving
properties of catamorphisms. Induction on tree-like structures is formalized as the
following fusion law.

Theorem 2.19 (cata fusion [MFP91,BdM96]).

(f ◦ φ = ψ ◦ Ff) ⇔ (f ◦ ([φ])F = ([ψ])F)

Proof.

FµF
inF //

F([φ])F
��

F([ψ])F

��

µF

([φ])F
��

([ψ])F

��

FA
φ

//

Ff
��

A

f
��

FB
ψ

// B

Notice that ([φ])F is an inductive computation on µF. Therefore, the premise of
Theorem 2.19, namely f ◦φ = ψ◦Ff , means that we can inductively (incrementally)
compute the value of f ◦φ on µF. In other words, Theorem 2.19 is a formalization of
successful inductive proofs. It is worth noting that similar theorems to Theorem 2.19
hold on the category Rel : Both (f ◦ φ ⊆ ψ ◦ Ff) ⇔ (f ◦ ([φ])F ⊆ ([ψ])F) and
(f ◦ φ ⊇ ψ ◦ Ff) ⇔ (f ◦ ([φ])F ⊇ ([ψ])F) hold if F is a relator.

As an example, let us consider a fusion transformation of two map macros, namely
Theorem 1.1. Recall that ([(const[ ]

△cons ◦ (g × id))])S corresponds to mapg.

mapf ◦ mapg = mapf◦g

⇔ { catamorphism }
mapf ◦ ([(const[ ]

△cons ◦ (g × id))])S = ([(const[ ]

△cons ◦ ((f ◦ g) × id))])S

⇔ { Theorem 2.19 }
mapf ◦ (const[ ]

△cons ◦ (g × id)) = (const[ ]

△cons ◦ ((f ◦ g) × id)) ◦ Smapf

⇐ { distributivity }
(mapf ◦ const[ ]

△mapf ◦ cons ◦ (g × id))
= (const[ ]

△cons ◦ ((f ◦ g) × id)) ◦ Smapf

⇔ { mapf ◦ const[ ] = const[ ] and mapf ◦ cons = cons ◦ (f × mapf ) }
(const[ ]

△cons ◦ (f × mapf ) ◦ (g × id))
= (const[ ]

△cons ◦ ((f ◦ g) × id)) ◦ Smapf

⇔ { composition, and mapf ◦ id = mapf }
(const[ ]

△cons ◦ ((f ◦ g) × mapf )) = (const[ ]

△cons ◦ ((f ◦ g) × id)) ◦ Smapf

⇔ { definition of S }
True
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Then, this calculation provides a proof of Theorem 1.1 by Theorem 2.19. In other
words, Theorem 2.19 is a generalization of Theorem 1.1. Compare this calculation
to the unfolding-folding calculation we have done in Section 1.2. The premise of
Theorem 2.19 corresponds to a sufficient condition for successful folding. From this
viewpoint, we can recognize Theorem 2.19 as an effective strategy for unfolding-
folding.

As the final remark about catamorphisms, we introduce the following lemma
that shows relationship between catamorphisms and the power transpose.

Lemma 2.20 (Eilenberg-Wright [BdM93a,BdM96]).

Λ([S])F = ([Λ(S ◦ F∈)])F

Proof.

Λ([S])F = ([Λ(S ◦ F∈)])F ⇔ { power transpose }
([S])F = ∈ ◦ ([Λ(S ◦ F∈)])F

⇐ { Theorem 2.19 }
S ◦ F∈ = ∈ ◦ Λ(S ◦ F∈)

⇔ { canceling Λ and ∈ }
True

2.4.3 Reflexive Transitive Closures

Although catamorphisms are an expressive recursion schema, there are computations
that are hardly captured by catamorphisms, such as a traverse on graphs. There have
been a lot of studies for expressing graph-traversing computations by catamorphisms
or catamorphism-like recursion schemes [Gib95,KL95,Erw97,SHT00,Erw00,Erw01],
yet it is unclear whether catamorphism-like schemes can express practical graph
traversing functions and be useful for practical calculations. Instead of them, we will
use the notion of reflexive transitive closures. A comparison between catamorphisms
and reflexive transitive closure was made by Curtis [Cur96].

Definition 2.21 (reflexive transitive closure). For a relation R:A→ A, the reflexive
transitive closure of R, denoted by R∗, is defined as follows.

R∗
def
= {(a, b) | ∃n ∈ Z+ : (a, b) ∈ Rn}

The reflexive transitive closure of R considers all cases that are obtained by
repeated application of R. Therefore, the while-loop idiom “apply a computation
R while it satisfies a predicate p” can be easily expressed by a reflexive transitive

closure (not ◦p)?◦(R ◦ p?)∗, where not(a)
def
= ¬a. In other words, reflexive transitive

closures correspond to while-loop like iterations.
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Let us consider Euclidean algorithm as an example. The following relation GCD
yields the greatest common divisor of given two natural numbers.

GCD
def
= π1 ◦ (isZero ◦ π2)? ◦ (step ◦ (isNotZero ◦ π2)?)∗

step(n,m)
def
= (m,mod(n,m))

mod(n,m) = k
def
⇐⇒ 0 ≤ k < m ∧ ∃c ∈ Z+ : n = m× c+ k

isZero(a)
def
= a = 0

isNotZero(a)
def
= a 6= 0

The computation of GCD can be interpreted as follows. At each step of recursion, we
divide the first integer by the second one, which should be the reminder calculated
at the previous recursion, and go to the next recursion with the smaller one and
the reminder given by the division. The recursion continues until the second integer
becomes zero. When the second is zero, the first is the greatest common divisor of
initial values.

Reflexive transitive closures satisfy the following promotion law, which charac-
terizes induction on their computation.

Theorem 2.22 (promotion law for reflexive transitive closures).

(f ◦ φ = ψ ◦ f) ⇒ (f ◦ φ∗ = ψ∗ ◦ f)

Proof. From the definition of reflexive transitive closures, it is sufficient to show
∀n ∈ Z+ : f ◦ φn = ψn ◦ f holds. The claim is proved by induction. The claim
obviously holds for the base case, namely the case of n = 0. The step case is proved
by the following calculation.

f ◦ φk+1 = { definition of the power notation }
f ◦ φ ◦ φk

= { assumption }
ψ ◦ f ◦ φk

= { induction hypothesis }
ψ ◦ ψk ◦ f

= { definition of the power notation }
ψk+1 ◦ f

Similar to the case of catamorphisms, the inequality-versions of Theorem 2.22
also hold, namely (f ◦φ ⊆ ψ◦f) ⇒ (f ◦φ∗ ⊆ ψ∗◦f) and (f ◦φ ⊇ ψ◦f) ⇒ (f ◦φ∗ ⊇
ψ∗ ◦ f).

The following lemma shows relationship between reflexive transitive closures and
the power transpose.

Lemma 2.23 (Eilenberg-Wright [Cur96]).

Λ(S∗) = (Λ(S ◦ ∈))∗ ◦ {·}
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Proof.

Λ(S∗) = (Λ(S ◦ ∈))∗ ◦ {·} ⇔ { power transpose }
S∗ = ∈ ◦ (Λ(S ◦ ∈))∗ ◦ {·}

⇐ { Theorem 2.22 and ∈ ◦ {·} = id }
S ◦ ∈ = ∈ ◦ Λ(S ◦ ∈)

⇔ { canceling Λ and ∈ }
True

2.4.4 Incrementality

Theorems 2.19 and 2.22 are formalization of successful induction, and the premise
of the theorems are useful to formalize properties that can be verified by induction.
Therefore, we would like to name the premise.

Definition 2.24 (incremental). For relations R:A↔ B, S :FA↔ A, and S ′:B → B,
R is said to be incremental on S by S ′ if R ◦ S = S ′ ◦ FR holds.

The following lemma clarifies a relationship between the notion of incrementality
and induction.

Lemma 2.25. For a function f : A→ B and a relation S : FA↔ A, f(a) = f(b)
implies Λ(f ◦ S)(a) = Λ(f ◦ S)(b) if f is incremental on S.

Proof. Let S ′ be the relation such that f ◦ S = S ′ ◦ Ff holds. Then, equations
Λ(f ◦ S)(a) = Λ(S ′ ◦ Ff)(a) = Λ(S ′ ◦ Ff)(b) = Λ(f ◦ S)(b) hold.

As seen in Lemma 2.25, when a function f is incremental on a relation S, S does
not disorder information drawn by f . In other words, the incrementality condition
indicates that if elements are generated by a repeated application of S, induction
on computations of S will enable us to prove properties of information drawn by f .
For example, consider the case where a predicate f is incremental on S by S ′ such
that ΛS ′(True) = {True} holds; then, f(a) implies f(a′) for any a′ ∈ ΛS(a), and
thus, the property f on repetition of S will be successfully proved by induction. In
summary, incrementality condition is important not only for fusion transformations
but also other calculations.

It is worth noting there are many studies for automatic implementation of the
theorems [SdM01,YHT05,Yok06]. Therefore, we can automatically verify incremen-
tality conditions by applying such studies.





Chapter 3

Calculational Laws for

Combinatorial Optimization

Problems

Combinatorial optimization problems are problems to find the optimal solution in a
set of feasible solutions, where solutions are discrete. For example, all of finding the
shortest path, finding the optimal packing, and finding the optimal scheduling are
combinatorial optimization problems. Since combinatorial optimization problems
have a great many applications, they are recognized as one of the most important
classes of problems in algorithm construction.

In this chapter, we will review existing calculational laws to develop efficient algo-
rithms for combinatorial optimization problems. First in Section 3.1, we formalize
generic specification of combinatorial optimization problems in terms of program
calculation. Then, in the next two sections, we introduce two kinds of calcula-
tional laws: greedy theorems and unified solutions for maximum marking problems.
Supplemental lemmas are shown in the last section, Section 3.4.

We introduce greedy theorems in Section 3.2. Greedy theorems, which are for-
malized by Bird, de Moor, and Curtis [BdM93a, BdM93b, dM95, BdM96, Cur96,
Cur03], are calculational laws that show a generic way for calculating efficient al-
gorithms for combinatorial optimization problems. Although the theorems capture
really a large class of problems, they are not easy to use. They require a certain
property, which is generally difficult to confirm or obtain.

Next, in Section 3.3, we review a unified solution of maximum marking prob-
lems [ALS91, BPT92, SHTO00]. Arnborg et al., Borie et al., and Sasano et al.,
independently showed that a class of combinatorial optimization problems, called
maximum marking problems, can be solved automatically once it is specified in cer-
tain forms. Their results are easy to use even for nonspecialists, because they are
fully automatic; however, their domain is not sufficiently large, and many interesting
problems cannot be coped with them. Bird [Bir01] showed a relationship between
the results about maximum marking problems and greedy theorems. The study
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of Bird seems to indicate that there are both generic and useful calculational laws
between them, though no concrete result has been shown yet.

3.1 Calculational Formalization of Combinatorial

Optimization Problems

3.1.1 Orders

Before introducing the notion of combinatorial optimization problems, we would like
to prepare some notions concerning orders, which are used for describing optimality.
We use quasi-order (also called preorder) to formalize optimization problems.

Definition 3.1 (quasi-order). A relation R : A↔ A is called quasi-order if the
following two properties are satisfied.

∀a ∈ A : a R a (reflectivity)
(a R b ∧ b R c) ⇒ a R c (transitivity)

Definition 3.2 (totality). A relation R : A↔ A is said to be total if a R b ∨ b R a
holds for all a ∈ A and b ∈ A.

In this thesis, we read aRb as “a is smaller than b” or “a is preferred to b” when
R is a quasi-order.

Equivalence relations and linear orders1 are important classes of quasi-orders.

Definition 3.3 (equivalence relation). A quasi-order R : A↔ A is called a equiva-
lence relation if the following property is satisfied.

a R b⇔ b R a (symmetry)

Definition 3.4 (linear order). A total quasi-order R :A↔ A is called a linear order
if the following property is satisfied.

(a R b ∧ b R a) ⇔ a = b (antisymmetry)

It is known that the sequential composition (also called lexicographic composi-
tion) of two quasi-orders is a quasi-order.

Definition 3.5 (sequential composition of two orders). For two relations R :A↔ A
and S :A↔ A, the sequential composition of R and S, denoted by R ;S, is defined
as follows2.

a (R ;S) b
def
⇐⇒ a S b ∧ (b S a ∨ a R b)

1Linear orders are also called total orders. We do not use the name to avoid the confusion
between total orders and total quasi-orders.

2R ;S is denoted by S ;R in [BdM96].
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The sequential composition of two quasi-orders R and S, namely R ;S, is a
quasi-order, where the ordering is the same as S expect for equivalent elements in
S, and equivalent elements in S are compared by R. The operator ;is associative.
Note that the following definition is equivalent to the definition above.

R ;S
def
= S ∩ (S◦ ⇒ R)

We make a special use of = and <. For a quasi-order R, R
= denotes the equivalent

part of R, i.e., a R
= b

def
⇐⇒ a R b ∧ b R a. Similarly, for a quasi-order R,

R
< denotes the

strict part of R, i.e., a
R
< b

def
⇐⇒ a R b ∧ b R a. We use a function to produce an order

from an order. For a function g :B → A and a quasi-order R :A↔ A, a quasi-order

Rg : B ↔ B is defined by a Rg b
def
⇐⇒ g(a) R g(b) where both g(a) and g(b) must be

defined. The following equations show alternative definitions of them.

R
=

def
= R ∩R◦

R
<

def
= R ∩R◦

Rg
def
= g◦ ◦R ◦ g

3.1.2 Minimums and Minimals

To extract minimum elements, we use an operator min. For a relation R : A↔ A,
the relation minR : PA↔ A is defined as follows.

(a,X) ∈ minR
def
⇐⇒ ∀b ∈ X : a R b

We can also give an equivalent definition in point-free style as follows.

minR
def
= ∈ ∩R/∋

Given a total quasi-order R, minR(X) yields the minimum elements in X based on
the order R. It is worth noting that minR is not very useful if R is not total. For
example, assume neither a R b nor b R a holds; then, ΛminR(X ∪ {a, b}) is empty
unless X contains an element c such both c R a and c R b hold. In such cases, it is
appropriate to use another operator mnl which extracts minimal elements, because
mnlR works well even when R is not total.

(a,X) ∈ mnlR
def
⇐⇒ ∀b ∈ X : b R a⇒ a R b

The following equation characterized the operator mnl .

mnlR = minR◦⇒R

Even if a quasi-order R is total, ΛminR(X) may yield an empty set for non-
empty X. For example, Λmin≤(Z) is empty, because there exists no least element
in integers. It is sometimes useful to exclude such peculiar cases for formalizing
calculational laws, and for this purpose, we introduce two notions: well-bounded
and well-supported.
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Definition 3.6 (well-bounded [BdM92, BdM96]). A relation R : A↔ A is well-
bounded if ΛminR(X) is nonempty for any nonempty set X ⊆ A.

The following inequality provides alternative characterization of well-bounded
relations; in other words, a relation R is well-bounded if and only if the following
inequality holds.

∈ ⊆ R◦ ◦ minR

Definition 3.7 (well-supported [BdM92, BdM96]). A relation R : A↔ A is well-
supported if ΛmnlR(X) is nonempty for any nonempty set X ⊆ A.

Similar to well-bounded relations, the following inequality provides alternative
characterization of well-supported relations.

∈ ⊆ R◦ ◦ mnlR

3.1.3 Generic Specification of Combinatorial Optimization

Problems

Now let us provide a generic specification of combinatorial optimization problems
based on program calculations. A combinatorial optimization problem is a problem
whose objective is to find the best solution among those being feasible. We can
express specifications of combinatorial optimization problems by a relation, a pred-
icate, and a quasi-order: A relation candidates specifies candidates of solutions, a
predicate feasible tests whether a solution is feasible or not, and an order R deter-
mines which solution is better.

minR ◦ feasible△ ◦ Λcandidates

If the relation candidates has no specific structure, then there is little hope to
obtain the best solution efficiently. In other words, efficient algorithms have been
studied for cases where candidates has a certain structure.

In usual, each candidate of solution is specified by a sequence of nondetermin-
istic choices in a combinatorial optimization problem. Let S be a relation that
corresponds to a nondeterministic choice. Then, candidates may be expressed by S
with a catamorphism.

candidates = ([S])

Or, in some cases, a transitive closure may be appropriate.

candidates = S∗

Therefore, we would like to provide effective calculational laws for problems de-
scribed in the following forms.

minR ◦ feasible△ ◦ Λ([S])
minR ◦ feasible△ ◦ Λ(S∗)
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It is worth noting that min can perform the computation of feasible△. Let Q be

the relation whose definition is aQ b
def
⇐⇒ feasible(a)∨¬feasible(b); then Q is a total

quasi-order, on which elements that satisfy feasible are smaller than those that do
not. Now the following expression is equivalent to the specification above.

minR ;Q ◦ Λcandidates

In summary, our goal is to provide calculational laws for composition of min and
enumeration of candidates.

As an example, let us consider shortest path problems. Given a graph (V,E), a
weight function w : E → R, and two ends s, t ∈ V , a shortest path problem is the
problem to find the minimum-weighted path from the source s to the destination
t. Since it is natural to enumerate paths by repetitions of extensions of a path, we
prepare a function extende : E∗ → E∗ defined as follows.

extend e(p)
def
= p++ [e] if p = [] ∨ dst(p) = hd(e)

The function extend e extends a path by an edge e whenever it makes a path. Then,
the enumeration of all paths is specified as follows.

paths
def
= (

⋃
e∈E extend e)∗

For determining optimality, we need to prepare two predicates together with a
quasi-order ≤w that compares paths by their weight. The predicate froms checks
whether a path starts from the vertex s, and the predicate endWitht checks whether
a path bounds for the vertex t.

froms([ ])
def
= False

froms([e] ++ p)
def
= hd(e) = s

endWitht(p)
def
= dst(p) = t

In all, shortest path problems are formalized as follows.

SP
def
= (min≤w

◦ endWitht
△ ◦ froms

△ ◦ Λpaths) [ ]

As explained, we can merge the filters, namely froms and endWitht, into the
min operator by defining the following total quasi-order Rs,t.

p1 Rs,t p2
def
⇐⇒ (endWitht(p1) ∧ froms(p1) ∧ endWitht(p2) ∧ froms(p2) ∧ p1 ≤w p2) ∨

(endWitht(p1) ∧ froms(p1) ∧ ¬(endWitht(p2) ∧ froms(p2))) ∨
(¬(endWitht(p1) ∧ froms(p1)) ∧ ¬(endWitht(p2) ∧ froms(p2)) ∧ p1 ≤w p2)

Then, the shortest path problem is specified as follows if there is a path from the
source s to the destination t.

SP = (minRs,t
◦ Λpaths) [ ]
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3.2 Greedy Theorems

In this subsection, we introduce greedy theorems and thinning theorems, which were
proposed by by Bird, de Moor, and Curtis [BdM93b,BdM93a,dM95,BdM96,Cur96,
Cur03]. The theorems provide a formalization of derivation of efficient algorithms
for combinatorial optimization problems. They mainly considered obtaining one
best solution of each combinatorial optimization problem; here, in addition to them,
we propose theorems for enumerating all the best solutions.

3.2.1 Monotonicity and Greedy Theorems

As shown in many studies [Mor82,BdM93b,BdM96,Cur96,Cur03], monotonicity is
the key to efficient algorithms.

Definition 3.8 (monotone). A relation S : FA↔ A is monotonic on a relation
R : A↔ A if the following property holds.

∀a1, a2 ∈ FA, a′1 ∈ A : (a1 FR a2 ∧ a
′
1 S a1) ⇒ (∃a′2 ∈ A : a′2 S a2 ∧ a

′
1 R a′2)

Alternative characterization of monotonicity is the following inequality.

S ◦ FR ⊆ R ◦ S

Note that monotonicity intuitively means that larger elements yield larger ones. We
will also use variants of monotonicity.

Definition 3.9 (strictly monotone). A relation S :FA↔ A is strictly monotonic on
a relation R : A↔ A if the following inequality holds.

∀a1, a2 ∈ FA, a′1 ∈ A : (a1
FR
< a2 ∧ a

′
1 S a1) ⇒ (∃a′2 ∈ A : a′2 S a2 ∧ a

′
1

R
< a′2)

Definition 3.10 (completely monotone). A relation S is completely monotonic on
R if S is both monotonic and strictly monotonic on R.

As similar to the case of monotonicity, strictly monotonicity is also characterized
by the following inequality.

S ◦
FR
< ⊆

R
< ◦ S

Now let us introduce the greedy theorems, which provide formalizations of deriva-
tion of efficient algorithms for combinatorial optimization problems.

Theorem 3.11 (greedy theorem for catamorphqisms [BdM93b, BdM96]). If a re-
lation S : FA↔ A is monotonic on a quasi-order R◦, then the following inequality
holds.

minR ◦ Λ([S]) ⊇ ([minR ◦ ΛS])



3.2. Greedy Theorems 37

Theorem 3.12 (greedy theorem for repetitions [Cur96, Cur03]). If a relation S :
A↔ A is monotonic on a quasi-order R◦, then the following inequality holds.

minR ◦ Λ(S∗) ⊇ (minR ◦ ΛS)∗

The statements of greedy theorems are natural. Recall that monotonicity means
that larger elements yield larger ones. Thus, the monotone property on R◦ implies
that smaller elements are produced from smaller elements. Therefore, we can discard
non-minimum elements at each step to obtain the minimum solution.

The greedy theorem is formalized by inequality, which means that the efficient
procedure may not generate all of minimum solutions. Someone may worry that
the efficient procedure would yield an empty result. Actually the efficient procedure
yields at least one solution if there is a feasible solution and the quasi-order R is
well-bounded, which is easily proved by induction. It is worth noting that well-
boundedness implies totality; thus, total quasi-orders are useful for the theorems.

The greedy theorems for min are useful to obtain one best solution on total
quasi-order. If we would like to enumerate all best solutions, or we would like to
consider best solutions on non-total quasi-orders, it is better to shift from min to
mnl . Let us introduce greedy theorems for mnl .

Theorem 3.13 (minimal-based greedy theorem for catamorphisms). Given a poly-
nomial functor F, a relation S : FA↔ A, and well-supported quasi-order R, the
following equation holds if S is strictly monotonic on R◦.

ΛmnlR ◦ Λ([S]) = ([ΛmnlR ◦ Λ(S ◦ F∈)])

Proof.

ΛmnlR ◦ Λ([S]) = ([ΛmnlR ◦ Λ(S ◦ F∈)])
⇔ { Eilenberg-Wright (Lemma 2.20) }

ΛmnlR ◦ ([Λ(S ◦ F∈)]) = ([ΛmnlR ◦ Λ(S ◦ F∈)])
⇐ { fusion (Theorem 2.19) }

ΛmnlR ◦ Λ(S ◦ F∈) = ΛmnlR ◦ Λ(S ◦ F∈) ◦ FΛmnlR
⇔ { FΛmnlR is a total function, and the property of total functions (2.2) }

ΛmnlR ◦ Λ(S ◦ F∈) = ΛmnlR ◦ Λ(S ◦ F∈ ◦ FΛmnlR)
⇔ { F is a functor, and the cancellation of Λ and ∈ }

ΛmnlR ◦ Λ(S ◦ F∈) = ΛmnlR ◦ Λ(S ◦ FmnlR)
⇐ { Lemma 3.28, because S ◦ F∈ ⊇ S ◦ FmnlR and R is well-supported }

mnlR ◦ Λ(S ◦ F∈) ⊆ S ◦ FmnlR
⇐ { Lemma 3.31 }

True

Theorem 3.14 (minimal-based greedy theorem for repetitions). Given a relation
S :A↔ A and a well-supported quasi-order R :A↔ A, the following equation holds
if S is strictly monotonic on R◦.

ΛmnlR ◦ Λ(S∗) = (ΛmnlR ◦ Λ(S ◦ ∈))∗ ◦ {·}
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Proof.

ΛmnlR ◦ Λ(S∗) = (ΛmnlR ◦ Λ(S ◦ ∈))∗ ◦ ΛmnlR
⇔ { Eilenberg-Wright (Lemma 2.23) }

ΛmnlR ◦ (Λ(S ◦ ∈))∗ ◦ {·} = (ΛmnlR ◦ Λ(S ◦ ∈))∗ ◦ {·}
⇐ { ΛmnlR ◦ {·} = {·} and fusion (Theorem 2.22) }

ΛmnlR ◦ Λ(S ◦ ∈) = ΛmnlR ◦ Λ(S ◦ ∈) ◦ ΛmnlR
⇔ { ΛmnlR is a total function, and the property of total functions (2.2) }

ΛmnlR ◦ Λ(S ◦ ∈) = ΛmnlR ◦ Λ(S ◦ ∈ ◦ ΛmnlR)
⇔ { canceling Λ and ∈ }

ΛmnlR ◦ Λ(S ◦ ∈) = ΛmnlR ◦ Λ(S ◦ mnlR)
⇐ { Lemma 3.28, because S ◦ ∈ ⊇ S ◦ mnlR and R is well-supported }

mnlR ◦ Λ(S ◦ ∈) ⊆ S ◦ mnlR
⇐ { Lemma 3.31 }

True

Theorems 3.13 and 3.14 clarify sufficient conditions to enumerate all optimal
solutions efficiently. The theorems state that minimal solutions of each step is suffi-
cient to obtain all minimal solutions if strictly monotonicity holds. It is worth noting
that the theorems deal with non-total quasi-orders. As the price of enumeration of
all solutions, the resulted programs of the greedy theorems for mnl are less efficient
than those obtained from the greedy theorems for min; In each step, the former ones
retain all minimal solutions, while the latter ones retain only one minimum solution.

We would like to remark that the theorems for mnl are applicable for obtaining
not minimal but minimum elements, as the following lemmas show.

Lemma 3.15. For any well-bounded quasi-order R, minR is equivalent to mnlR.

Proof. First, notice that well-boundedness implies totality. It is because, if R is
not total, there exist elements a and b such that neither a R b nor b R a holds,
and then {a, b} has no minimum element. Therefore, it is sufficient to prove that
R = (R◦ ⇒ R) holds if R is total.

a (R◦ ⇒ R) b ⇔ { definition of ⇒ }
b R a ∨ a R b

⇔ { trivial (∨) }
(b R a ∧ a R b) ∨ a R b

⇔ { negation }
¬(b R a ∨ a R b) ∨ a R b

⇔ { R is total }
a R b

Lemma 3.16. Well-bounded quasi-order is well-supported.

Proof. It is a direct consequence of 3.15.
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3.2.2 Thinning Theorems

It is frequent that the relation to generate candidates does not satisfy monotonicity
on the order that we would like to optimize. In such cases, the greedy theorems
do not work at all. Even so, there may exist efficient procedure to obtain the best
solution, because we may be able to discard apparently useless candidates. Bird and
de Moor formalized this intuition as thinning theorems [BdM96,Bir01].

A technical difficulty for formalizing the thinning theorem is treatment of non-
total orders. The order to discard apparently useless candidates should be weaker
than the original order that we would like to optimize, and thus the order may not
be total. However, as explained, the greedy theorems for min implicitly requires
total quasi-orders. The greedy theorems for mnl does not require totality, while
the resulted programs are a bit inefficient for obtaining one best solution. Bird
and de Moor proposed another operator thin to deal with non-total quasi-orders.
For a quasi-order R :A↔ A, thinR : PA↔ PA is a relation satisfying the following
axiomatic property.

(Y,X) ∈ thinR
def
⇐⇒ (Y ⊆ X ∧ ∀b ∈ X,∃a ∈ Y : a R b)

Intuitively, thin discards a part of elements that are larger than another element.
Now let us introduce the thinning theorem.

Theorem 3.17 (thinning theorem for catamorphisms [BdM96, Bir01]). For any
relations R and S, and an quasi-order Q, the following inequality holds provided
that Q ⊆ R holds and S is monotonic on Q◦.

minR ◦ Λ([S]) ⊇ minR ◦ ([thinQ ◦ Λ(S ◦ F∈)])

Theorem 3.18 (thinning theorem for repetitions). For any relations R and S, and
an quasi-order Q, the following inequality holds provided that Q ⊆ R holds and S
is monotonic on Q◦.

minR ◦ Λ(S∗) ⊇ minR ◦ (thinQ ◦ Λ(S ◦ ∈))∗ ◦ {·}

As similar to the greedy theorems, the statement of thinning theorems is intu-
itive. We can discard elements that never yield minimums, even when minR may
discard elements that may yield minimums. The disposal of useless elements are per-
formed by thinQ, and the monotonicity condition of Q guarantees that the disposal
is safe.

One important issue is the way to specify the order Q. The order Q does not
appear in the specification, and thus, it is necessary to find out Q; besides, Q◦ must
satisfy the monotone property, which makes it difficult to derive an appropriate Q.

Another important issue is the implementation of thinQ. thin is a general oper-
ator and its axiom does not specify a concrete implementation. In other words, the
efficiency of derived algorithms depends on the implementation of thinQ. However, it
is difficult to provide appropriate implementation for thinQ, because there are many
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functions that satisfy the characterization. For example, all of the identity function,
ΛminR where R is well-bounded quasi-order, and ΛmnlR where R is well-supported
quasi-order satisfy the axiom of thinR.

As similar to the case of greedy theorems, we can consider thinning theorems
to enumerate all of best solutions as follows. It is worth noting that in the case of
enumerating all of best solutions, thinning theorems can be seen as generalizations
of greedy theorems for mnl .

Theorem 3.19 (minimal-based thinning theorem for catamorphisms). Given a
polynomial functor F, a relation S : FA↔ A, and well-supported quasi-order R,

the following equation holds if
Q
< ⊇

R
< holds and S is strictly monotonic on Q◦.

ΛmnlR ◦ Λ([S]) = ΛmnlR ◦ ([ΛmnlQ ◦ Λ(S ◦ F∈)])

Proof.

ΛmnlR ◦ Λ([S]) = { Lemma 3.29 }
ΛmnlR ◦ ΛmnlQ ◦ Λ([S])

= { Theorem 3.13 }
ΛmnlR ◦ ΛmnlQ ◦ ([ΛmnlQ ◦ Λ(S ◦ F∈)])

= { Lemma 3.29 }
ΛmnlR ◦ ([ΛmnlQ ◦ Λ(S ◦ F∈)])

Theorem 3.20 (minimal-based thinning theorem for repetitions). Given a relation

S :A↔ A and well-supported quasi-order R, the following equation holds if
Q
< ⊇

R
<

holds and S is strictly monotonic on Q◦.

ΛmnlR ◦ Λ(S∗) = ΛmnlR ◦ (ΛmnlQ ◦ Λ(S ◦ ∈))∗ ◦ {·}

Proof.

ΛmnlR ◦ Λ(S∗) = { Lemma 3.29 }
ΛmnlR ◦ ΛmnlQ ◦ Λ(S∗)

= { Theorem 3.14 }
ΛmnlR ◦ ΛmnlQ ◦ (ΛmnlQ ◦ Λ(S ◦ ∈))∗ ◦ {·}

= { Lemma 3.29 }
ΛmnlR ◦ (ΛmnlQ ◦ Λ(S ◦ ∈))∗ ◦ {·}

3.2.3 Drawbacks of Greedy Theorems and Thinning Theo-

rems

So far, we have reviewed greedy theorems and thinning theorems. Although these
theorems provide a clear formalization of greedy algorithms, they are difficult to
use for nonspecialist. The most significant hardship is the step to confirm or derive
monotonicity condition. The theorems require monotonicity (or strictly monotonic-
ity) condition, and even checking the condition is not easy.
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For example, recall the specification shortest path problems.

SP
def
= (min≤w

◦ endWitht
△ ◦ froms

△ ◦ Λ(
⋃

e∈E

extend e)∗) [ ]

For applying greedy theorems or thinning theorems, we need to crush the predicates
into the order.

SP = (minRs,t
◦ Λ(

⋃
e∈E extend e)∗) [ ]

p1 Rs,t p2
def
= (endWitht(p1) ∧ froms(p1) ∧ endWitht(p2) ∧ froms(p2) ∧ p1 ≤w p2) ∨

(endWitht(p1) ∧ froms(p1) ∧ ¬(endWitht(p2) ∧ froms(p2))) ∨
(¬(endWitht(p1) ∧ froms(p1)) ∧ ¬(endWitht(p2) ∧ froms(p2)) ∧ p1 ≤w p2)

Then, we would like to check that the relation
⋃

e∈E extend e is monotonic (or strictly
monotonic) on the order R◦

s,t. This is quite hard task because of the complicated
definition of Rs,t; moreover, and disappointingly, neither monotonicity condition nor
strictly monotonicity condition holds.

Next we try to apply the thinning theorem. For the thinning theorem, we need
to prepare a quasi-order on which the relation

⋃
e∈E extend e is monotonic. Such a

quasi-order is difficult to find. In fact, the following order Qs is appropriate.

p1 Qs p2
def
= froms(p1) ∧ (¬froms(p2) ∨ (dst(p1) = dst(p2) ∧ p1 ≤w p2))

The order Qs satisfies Qs ⊆ Rs,t; furthermore,
⋃

e∈E extend e is monotonic on Q◦
s.

Thus, we can use the thinning theorem and derive efficient algorithm for shortest
path problems. However, even confirming such properties is not easy, much less
deriving the order Qs.

In summary, for systematic development of efficient algorithms, it is indispens-
able to develop methods for confirming or obtaining monotonicity conditions.

3.3 Solving Maximum Marking Problems

Some studies [ALS91,BPT92,SHTO00] show a unified algorithm for a class of com-
binatorial optimization problems, called maximum marking problems. Maximum
marking problems are problems to find a marking of an underlying structure that
has the maximum sum of marked elements. Marking should satisfy some require-
ments, which make the problem hard. Bird [Bir01] clarified the relationship between
the result about maximum marking problems and thinning theorems. We review
these studies in this section.

3.3.1 Deriving Linear-Time Algorithms by Specifying Re-

quirements for Markings

First, we would like to formalize maximum marking problems. Let SA be the type
of the underlying structure that retains elements of type A. Let MA = A + A be
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the type of markings for an element of type A: for an element a ∈ A, L(a) and
R(a) respectively denote marked a and not marked a. Let markingS : SR ↔ SMR

be
the relation that give a marking on the structure S, and wsum : SMR

→ R be the
function that sums up all marked elements in the structure. Now, given a constraint
constraint : SMR

→ Bool , a maximum marking problem is formalized as follows.

min≥wsum
◦ constraint△ ◦ ΛmarkingS

Sasano et al. [SHTO00] showed a unified algorithm for a class of maximum
marking problems. Here, we consider a simple case, maximum marking problems on
sequences. The followings are the definitions of functions marking : R∗ ↔M∗

R
and

wsum :M∗
R
→ R for this case.

([a′0, . . . , a
′
n], [a0, . . . , an]) ∈ marking

def
⇐⇒ ∀0 ≤ i ≤ n : a′i ∈ {L(ai),R(ai)}

wsum([ ])
def
= 0

wsum([L(a)] ++ x)
def
= a+ wsum(x)

wsum([R(a)] ++ x)
def
= wsum(x)

Then, each predicate constraint :R → Bool specifies an instance of maximum mark-
ing problems.

The idea of Sasano et al. is to consider the predicate constraint of a specific form.
As seen in the previous section, existence of the requirement constraint△ makes
problems difficult, and thus, the problem will be solved in ease when constraint
satisfies a good property. Sasano et al. considered the case in which constraint is
written by foldr.

Theorem 3.21 (optimization theorem on sequences [SHTO00]). The following
equation holds.

min≥wsum
◦ (accept ◦ foldr⊕,e)△ ◦ Λmarking

= min≥wsum
◦ (accept ◦ foldr⊕,e)△ ◦ maximals

maximals([ ])
def
= {[ ]}

maximals([a] ++ x)
def
= ΛmnlR({[a′] ++ y | a′ ∈ {L(a),R(a)} ∧ y ∈ maximals(x)})

a R b
def
= a≥wsum b ∧ foldr⊕,e(a) = foldr⊕,e(b)

The function maximals generates only a small set of markings, because most of
the candidates will be discarded by mnlR in each recursion step; thus, the resulted
program is efficient. In addition, if the range of foldr⊕,e is finite, the derived algorithm
yields the optimal result in time linear to the length of the underlying sequence,
because only constant number of candidates are considered in each step3. The

3Correctly, we need to assume that no two markings have the same weight for guaranteeing
that the resulted algorithm is a linear-time algorithm. It is worth remarking that even if this
assumption does not holds, we can obtain one optimal solution in time linear to the length of the
sequence. Let a quasi-order R′ be an order that compares two markings being equivalent on R by
a lexicographic ordering. Then, as similar to R, R′ satisfies monotonicity condition, and we can
obtain a part of the optimal solutions by using R′.
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strong point of Theorem 3.21 is that it is applicable without confirming any premise
once the problem is specified in the form.

As a concrete example, let us solve the maximum segment sum problem [Ben86,
Bir89] by Theorem 3.21. The problem is problem to find the segment that has the
maximum sum, and here a segment is a consecutive subsequence including an empty
sequence. For example, mss([−3, 2, 4,−5, 1, 6,−8, 3]) = 2 + 4 + (−5) + 1 + 6 = 8,
where mss is the function that solves the maximum segment sum problem. The
specification of mss in the style of maximum marking problems is the following.

mss
def
= wsum ◦ min≥wsum

◦ isSeg△ ◦ Λmarking

isSeg([ ])
def
= True

isSeg([L(a)] ++ x)
def
= isInitSeg(x)

isSeg([R(a)] ++ x)
def
= isSeg(x)

isInitSeg([ ])
def
= True

isInitSeg([L(a)] ++ x)
def
= isInitSeg(x)

isInitSeg([R(a)] ++ x)
def
= noMark(x)

noMark([ ])
def
= True

noMark([L(a)] ++ x)
def
= False

noMark([R(a)] ++ x)
def
= noMark(x)

The specification certainly requires that the marked elements should form a segment.
For use of Theorem 3.21, we should specify the predicate isSeg in terms of foldr.

For this purpose, tupling transformations [Fok89, Chi93, HITT97] is effective. Let

us consider a function g(x)
def
= (isSeg(x), isInitSeg(x), noMark(x)) that computes all

of isSeg , isInitSeg , and noMark in the same time. Then, it is straightforward to
specify the function g by a foldr.

g = foldr⊕,e

e
def
= (True,True,True)

L(a) ⊕ (p, q, r)
def
= (q, q,False)

R(a) ⊕ (p, q, r)
def
= (p, r, r)

Now the maximum segment sum problem is specified in the form that Theorem 3.21
is applicable.

mss = wsum ◦ min≥wsum
◦ (π1 ◦ foldr⊕,e)△ ◦ Λmarking

Then, Theorem 3.21 immediately derives a linear-time algorithm. The derived pro-
gram exactly corresponds to the efficient program introduced by Bentley [Ben86],
when we apply an efficiency improvement method proposed by Matsuzaki [Mat07b].

So far, we have considered maximum marking problems on a sequence of num-
bers. Sasano et al. [SHTO00] proved that we could generalize the result to polyno-
mial data structures. Maximum marking problems on polynomial data structures
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can be solved immediately once the constraint is specified in terms of a catamor-
phism.

Arnborg et al. [ALS91] and Borie et al. [BPT92] independently showed similar
results. Any maximum marking problem is solvable in time linear to the size of
the underlying structure, whenever the underlying structure is a tree-decomposable
graph and the constraint is expressed by a monadic second order logic formula.
The point is that we can translate these problems into equivalent maximum mark-
ing problems, where the underlying structure is a tree and the constraint can be
checked by a tree automaton. Since representative relations of tree automata are
catamorphisms of finite ranges, their results are quite similar to that of Sasano et
al.

3.3.2 Drawbacks and Relationship to Monotonicity

These results about maximum marking problems are interesting and useful. We
do not need to struggle for obtaining monotonicity conditions once the problem is
specified in the form. However, their drawback is the lack of generality. They can
deal with, essentially, only the maximum marking problems on a tree. For example,
they cannot deal with problems on graphs, such as the shortest path problems.

Bird [Bir01] showed a relationship between these results and the thinning theo-
rem. Rewrite the relation marking by a catamorphism on the category Rel .

marking = ([(const [ ]

△mark)])

mark
def
= {([a′] ++ x, (a, x)) | a′ ∈ {L(a),R(a)}}

The key observation is that the relation (const [ ]

△mark) is monotonic on the order
≥wsum ∩ =foldr⊕,e

for any ⊕ and e. Therefore, the thinning theorem enables us to
discard unnecessary candidates, which yields Theorem 3.21.

This result seems helpful to extend Theorem 3.21 so as to cope with a more
general class of problems. However, Bird showed nothing about the extension of
Theorem 3.21.

3.4 Supplemental Lemmas

Lemma 3.22 (Inequality (4.6) of [BdM96]).

(R ◦ S) ∩ T ⊆ R ◦ (S ∩ (R◦ ◦ T ))

Lemma 3.23 (Equation (4.22) in [BdM96]).

R/Y = R ◦ Y ◦

Lemma 3.24 (Equation (7.5) of [BdM96]).

minR ◦ ΛS = (S ∩R/S◦)
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Lemma 3.25 (Exercise 7.10 of [BdM96]). For reflexive relations R and S, minR ⊆
minS holds if and only if R ⊆ S holds.

Proof. The “if” part is trivial. We prove the “only if” part.

minR ⊆ minS ⇔ { power transpose }
∀X : ΛminR(X) ⊆ ΛminS(X)

⇒ { let X = {a, b} such that a R b holds }
∀a, b : a R b⇒ (ΛminR({a, b}) ⊆ ΛminS({a, b}))

⇒ { definition of min }
∀a, b : a R b⇒ (a ∈ ΛminS({a, b}))

⇒ { definition of min }
∀a, b : a R b⇒ a S b

Lemma 3.26 (Exercise 7.32 in [BdM96]). If R is a well-supported quasi-order, then
the following equation holds.

mnlR ◦ Λ(X ∪ Y ) = mnlR ◦ Λ(mnlR ◦ ΛX ∪ mnlR ◦ ΛY )

Proof. mnlR ◦ Λ(X ∪ Y ) ⊆ mnlR ◦ Λ(mnlR ◦ ΛX ∪ mnlR ◦ ΛY ) (inequality (7.11)
in [BdM96]) is easy to prove. We would like to prove the latter half. Here let

P
def
= R◦ ⇒ R and S

def
= (mnlR ◦ ΛX ∪ mnlR ◦ ΛY ).

mnlR ◦ ΛS ⊆ mnlR ◦ Λ(X ∪ Y )
⇔ { Lemma 3.24 }

(S ∩ P/S◦) ⊆ ((X ∪ Y ) ∩ P/(X ∪ Y )◦)
⇐ { trivial (intersection) }

(S ⊆ (X ∪ Y ) ∧ (P/S◦ ⊆ P/(X ∪ Y )◦)
⇔ { (mnlR ◦ ΛX ∪ mnlR ◦ ΛY ) ⊆ (X ∪ Y ) }

P/S◦ ⊆ P/(X ∪ Y )◦

⇔ { property of / }
P/S◦ ◦ (X ∪ Y )◦ ⊆ P

⇐ { well-supportedness }
P/S◦ ◦ (R◦ ◦ mnlR ◦ Λ(X ∪ Y ))◦ ⊆ P

⇐ { mnlR ◦ Λ(X ∪ Y ) ⊆ (mnlR ◦ ΛX ∪ mnlR ◦ ΛY ) = S }
P/S◦ ◦ (R◦ ◦ S)◦ ⊆ P

⇐ { right-division }
P ◦R ⊆ P

⇔ { claim (proved in the following) }
True

The claim is proved as follows.
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c (R◦ ⇒ R) b ∧ b R a ⇔ { definition of ⇒ }
(¬(b R c) ∨ c R b) ∧ b R a

⇔ { distributing ∧ over ∨ }
(¬(b R c) ∧ b R a) ∨ (c R b ∧ b R a)

⇒ { transitivity }
¬(a R c) ∨ (c R a)

⇔ { definition of ⇒ }
c (R◦ ⇒ R) a

Lemma 3.27.

(R◦ ◦X/Y ⊆ S) ⇔ (R ◦ S ⊆ X ◦ Y ◦)

Proof.

R◦ ◦X/Y ⊆ S ⇔ { converse }
(X/Y )◦ ◦R ⊆ S◦

⇔ { right division }
(X/Y )◦ ⊆ S◦/R

⇔ { double negation }

(X/Y )◦ ⊆ S◦/R
⇔ { Lemma 3.23 }

(X ◦ Y ◦)◦ ⊆ (S◦ ◦R◦)
⇔ { negation and converse }

X ◦ Y ◦ ⊇ R ◦ S

Lemma 3.28. Given a well-supported quasi-order R, X ⊇ Y ⊇ ΛmnlR(X) implies
ΛmnlR(X) = ΛmnlR(Y ).

Proof.

ΛmnlR(Y ) = { Y ⊇ ΛmnlR(X) }
ΛmnlR(ΛmnlR(X) ∪ Y )

= { Lemma 3.26 }
ΛmnlR(ΛmnlR(ΛmnlR(X)) ∪ ΛmnlR(Y ))

= { ΛmnlR is idempotent }
ΛmnlR(ΛmnlR(X) ∪ ΛmnlR(Y ))

= { Lemma 3.26 }
ΛmnlR(X ∪ Y )

= { X ⊇ Y }
ΛmnlR(X)

Lemma 3.29. For any well-supported quasi-order R and S,
R
< ⊇

S
< implies ΛmnlR◦

ΛmnlS = ΛmnlR.

Proof. From Lemma 3.28 and the fact ΛmnlS(X) ⊆ X, it is sufficient to prove
ΛmnlR ⊆ ΛmnlS. From Lemma 3.25, it is sufficient to show that R◦ ⇒ R is
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reflexive for any relation R and
R
< ⊇

S
< is equivalent to (R◦ ⇒ R) ⊆ (S◦ ⇒ S).

First, let us prove the former claim, namely the reflexivity of R◦ ⇒ R.

(R◦ ⇒ R) ⊇ id ⇔ { axiom of ⇒ }
R ⊇ (R◦ ∩ id)

⇔ { identity }
R ⊇ (R◦ ∩ id◦)

⇔ { distributivity of converses over intersections }
R ⊇ (R ∩ id)◦

⇔ { R ∩ id ⊆ id }
R ⊇ (R ∩ id)

⇔ { intersection }
True

The latter one is proved as follows.

R
< ⊇

S
< ⇔ { definition of

R
< and

S
< }

(R ∩R◦) ⊇ (S ∩ S◦)
⇔ { negation }

(R ∩R◦) ⊆ (S ∩ S◦)
⇔ { distributivity of negations over conjunctions }

(R ∪R◦) ⊆ (S ∪ S◦)
⇔ { double-negation elimination }

(R ∪R◦) ⊆ (S ∪ S◦)
⇔ { converse }

(R ∪R◦)◦ ⊆ (S ∪ S◦)◦

⇔ { distributivity of converses over disjunctions and negations }
(R◦ ∪R) ⊆ (S◦ ∪ S)

⇔ { definition of implications }
(R◦ ⇒ R) ⊆ (S◦ ⇒ S)

Lemma 3.30. For any polynomial functor F and a reflective relation R, FmnlR =
mnlFR ◦ ΛF∈ holds.

Proof. First we reason as follows.

FmnlR = mnlFR ◦ ΛF∈ ⇔ { definition of mnl and Lemma 3.24 }
F(∈ ∩ (R◦ ⇒ R)/∋) = (F∈ ∩ (FR◦ ⇒ FR)/F∋)

⇔ { Lemma 2.11 }
(F∈ ∩ F(R◦ ⇒ R)/F∋) = (F∈ ∩ (FR◦ ⇒ FR)/F∋)

Now, from Lemma 2.9, it is sufficient to prove F(R◦ ⇒ R)/F∋ ⊇ (FR◦ ⇒ FR)/F∋,
which is equivalent to F(R◦ ⇒ R) ⊇ (FR◦ ⇒ FR)/F∋◦F∋. We prove it by induction
on the functor. When the functor F is the identity functor or a constant functor,
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the claim apparently holds. The case of sum, namely when F = G + H, is also easy
to prove. We reason as follows.

L(a) (((G + H)R◦ ⇒ (G + H)R)/(G + H)∋ ◦ (G + H)∋) L(b)
⇔ { definition of tagged sum }

L(a) ((GR◦ ⇒ GR)/G∋ ◦ G∋) L(b)
⇒ { induction hypothesis }

L(a) G(R◦ ⇒ R) L(b)
⇔ { definition of tagged sum }

L(a) ((G + H)(R◦ ⇒ R)) L(b)

And by reasoning the other case in the same way, we can prove the case of the sum.
The only nontrivial case is the case of product, namely when F = G × H, which is
proved as follows.

(a1, a2) (((G × H)R◦ ⇒ (G × H)R)/(G × H)∋ ◦ (G × H)∋) (b1, b2)
⇔ { definition of product }

∃X1, X2 : a1 G∈X1 ∧ b1 G∈X1 ∧ a2 H∈X2 ∧ b2 H∈X2 ∧
(∀c1 G∈X1, c2 H∈X2 : (c1 GR a1 ∧ c2 HR a2) ⇒ (a1 GR c1 ∧ a2 HR c2))

⇒ { instantiating ∀ quantified variables }
∃X1, X2 : a1 G∈X1 ∧ b1 G∈X1 ∧ a2 H∈X2 ∧ b2 H∈X2 ∧
(∀c1 G∈X1 : (c1 GR a1 ∧ a2 HR a2) ⇒ (a1 GR c1 ∧ a2 HR a2)) ∧
(∀c2 H∈X2 : (a1 GR a1 ∧ c2 HR a2) ⇒ (a1 GR a1 ∧ a2 HR c2))

⇔ { simplify (reflectivity) }
∃X1, X2 : a1 G∈X1 ∧ b1 G∈X1 ∧ a2 H∈X2 ∧ b2 H∈X2 ∧
(∀c1 G∈X1 : c1 GR a1 ⇒ a1 GR c1) ∧ (∀c2 H∈X2 : c2 HR a2 ⇒ a2 HR c2)

⇔ { simplify (quantifier) }
(∃X1 : a1 G∈X1 ∧ b1 G∈X1 ∧ (∀c1 G∈X1 : c1 GR a1 ⇒ a1 GR c1)) ∧
(∃X2 : a2 H∈X2 ∧ b2 H∈X2 ∧ (∀c2 H∈X2 : c2 HR a2 ⇒ a2 HR c2))

⇔ { definition of product }
(a1, a2) (((GR◦ ⇒ GR)/G∋ ◦ G∋) × ((HR◦ ⇒ HR)/H∋ ◦ H∋)) (b1, b2)

⇒ { induction hypothesis }
(a1, a2) (G(R◦ ⇒ R) × H(R◦ ⇒ R)) (b1, b2)

⇔ { definition of product }
(a1, a2) ((G × H)(R◦ ⇒ R)) (b1, b2)

Lemma 3.31. Given a reflective relation R : A↔ A and a relation S : FA↔ A,
where F is a polynomial functor, the following inequality holds, provided that S is
strictly monotonic on R◦.

mnlR ◦ Λ(S ◦ F∈) ⊆ S ◦ FmnlR

Proof.
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mnlR ◦ Λ(S ◦ F∈) ⊆ S ◦ FmnlR
⇔ { Lemma 3.30 }

mnlR ◦ Λ(S ◦ F∈) ⊆ S ◦ mnlFR ◦ ΛF∈
⇔ { definition of mnl and Lemma 3.24 }

(S ◦ F∈) ∩ (R◦ ⇒ R)/(F∋ ◦ S◦) ⊆ S ◦ (F∈ ∩ (FR◦ ⇒ FR)/F∋)
⇐ { Lemma 3.22 }

S ◦ (F∈ ∩ S◦ ◦ (R◦ ⇒ R)/(F∋ ◦ S◦)) ⊆ S ◦ (F∈ ∩ (FR◦ ⇒ FR)/F∋)
⇐ { trivial }

S◦ ◦ (R◦ ⇒ R)/(F∋ ◦ S◦) ⊆ (FR◦ ⇒ FR)/F∋
⇐ { right division }

S◦ ◦ (R◦ ⇒ R)/S◦ ⊆ (FR◦ ⇒ FR)
⇔ { Lemma 3.27 }

S ◦ (FR◦ ⇒ FR) ⊆ (R◦ ⇒ R) ◦ S

⇔ { definition of
R◦

< }

S ◦
FR◦

< ⊆
R◦

< ◦ S
⇔ { premise: strictly monotonicity }

True





Chapter 4

Compositional Approach to

Monotonicity

As seen in Chapter 3, monotonicity condition is a key to efficient algorithms of
combinatorial optimization problems, though confirming or obtaining the condition
is hard in practice. Our goal is to provide effective methods for such situations.

In this chapter, we develop calculational laws for obtaining and confirming mono-
tonicity conditions. Our idea is to examine structures of problems more carefully.
We examine how candidates are generated, on what order we would like to opti-
mize, and what condition solutions should satisfy; then, based on the structures,
we construct orders that satisfy monotonicity conditions. As a summary of our
laws, we propose calculational laws that are useful to derive dynamic programming
algorithms. For demonstrating effectiveness of our method, we show derivations of
efficient algorithms for several problems, including shortest path problems and their
variants. Our calculational laws enable us to derive efficient algorithms in ease, even
for graph-iterating problems. Supplemental lemmas are shown in the last section,
Section 4.4, with their proofs.

Before introducing our calculational laws, we would like to introduce a notion
that is useful to formalize our laws.

Definition 4.1 (collapsing). For functions f :A→ B and g :A→ C, f is said to be
more collapsing than g if g(a1) = g(a2) implies f(a1) = f(a2) for any a1, a2 ∈ A.

In usual, a function f :A→ B maps each element of A to an element of B, with
losing some information on A. We have introduced the notion of collapsing so as
to compare how much information is lost by applying a function. When function
f is more collapsing than another function g, then f loses more information than
g; in other words, information remained after applying f can be retrieved from
information remained after applying g.

There are some equivalent definitions.

This chapter corresponds to a revised version of [MMHT07].
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Lemma 4.2. For total functions f and g, the following statements are equivalent.

1. f is more collapsing than g.
2. =f ⊇ =g.
3. There exists a (possibly partial) function f ′ such that f = f ′ ◦ g.

Proof. The second statement is just a rephrase of the first one. It is easy to see the
third statement implies the second one: g(a1) = g(a2) implies f(a1) = f ′(g(a1)) =
f ′(g(a2)) = f(a2). In the following, we prove the second statement implies the third
one. Let f ′ = f ◦ g◦. Then f ′ is simple, namely (f ◦ g◦) ◦ (f ◦ g◦)◦ ⊆ id holds, as
the following calculation proves.

(f ◦ g◦) ◦ (f ◦ g◦)◦ ⊆ id
⇔ { distributing a converse over the composition }

f ◦ g◦ ◦ g ◦ f ◦ ⊆ id
⇔ { properties of total functions (2.3) and (2.4) }

g◦ ◦ g ⊆ f ◦ ◦ f
⇔ { (f ◦ ◦ f) = =f }

=g ⊆ =f

Now it is sufficient to prove f = f ′ ◦ g. f ⊆ f ′ ◦ g evidently holds from the property
of total functions (2.4). The following calculation proves f ⊇ f ′ ◦ g.

f = { h = h ◦ h◦ ◦ h holds for any function h }
f ◦ f ◦ ◦ f

⊇ { =f ⊇ =g and =f = f ◦ ◦ f }
f ◦ g◦ ◦ g

= { definition of f ′ }
f ′ ◦ g

4.1 Constructing Monotonicity Conditions

In this section, we would like to discuss the way to confirm or obtain monotonicity
conditions. We adopt a constructive approach. We confirm or obtain monotonicity
conditions for complicated ones by combining simple ones.

4.1.1 Specifying Candidate Generators as Unions of Func-

tions

First, we would like to make ease to confirm monotonicity condition. Monotonicity
condition of relations forms a statement like “for all something, exists something,
such that”, which is hard to reason. In contrast to it, monotonicity condition of
total functions is easy to reason.
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Lemma 4.3. For a total function f : FA→ A and a relation R :A↔ A, f is mono-
tonic on R if and only if Rf ⊇ FR holds.

Proof.

R ◦ f ⊇ f ◦ FR ⇔ { property of total functions (2.3) }
f ◦ ◦R ◦ f ⊇ FR

⇔ { definition of Rf }
Rf ⊇ FR

Lemma 4.4. For a total function f :FA→ A and a relation R :A↔ A, f is strictly

monotonic on R if and only if (
R
<)f ⊇

FR
< holds.

Proof. The proof is almost the same as that of Lemma 4.3.

Lemma 4.5. For a total function f : FA→ A and a relation R : A↔ A, where F

is a relator, f is monotonic (strictly monotonic, completely monotonic) on R if and
only if f is monotonic (strictly monotonic, completely monotonic) on R◦.

Proof. We prove the case of monotonicity. Others are similar.

R ◦ f ⊇ f ◦ FR ⇔ { converse }
f ◦ ◦R◦ ⊇ (FR)◦ ◦ f ◦

⇔ { F is a relator }
f ◦ ◦R◦ ⊇ FR◦ ◦ f ◦

⇔ { properties of total functions (2.3) and (2.4) }
R◦ ◦ f ⊇ f ◦ FR◦

As Lemmas 4.3, 4.4, and 4.5 show, use of total functions eases the difficulty to
confirm monotonicity. Thus, we would like to use total functions instead of relations
as much as possible. For this purpose, we decompose a relation in two steps. We
first decompose a relation into a union of partial functions, and then, we decompose
each partial functions into a total function with a filter. Such decompositions make
it easy to confirm monotonicity conditions.

Lemma 4.6. Given two relations S : FA→ B and T : FA→ B, S ∪ T is monotonic
(strictly monotonic, completely monotonic) on a relation R if both S and T are
monotonic (strictly monotonic, completely monotonic) on R.

Proof. We prove the case of monotonicity. Others are similar.

R ◦ (S ∪ T ) ⊇ (S ∪ T ) ◦ FR ⇔ { right distributivity of ◦ over ∪ }
R ◦ (S ∪ T ) ⊇ (S ◦ FR ∪ T ◦ FR)

⇔ { property of ∪ }
(R ◦ (S ∪ T ) ⊇ S ◦ FR) ∧ (R ◦ (S ∪ T ) ⊇ T ◦ FR)

⇐ { trivial (∪) }
(R ◦ S ⊇ S ◦ FR) ∧ (R ◦ T ⊇ T ◦ FR)

⇔ { premise }
True
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Lemma 4.7. Given relations S:FA↔ A and P :GA↔ A, P ◦S is monotonic (strictly
monotonic, completely monotonic) on a relation R if both P is monotonic (strictly
monotonic, completely monotonic) on R and S is monotonic (strictly monotonic,
completely monotonic) on GR.

Proof. We prove the case of monotonicity. Others are similar.

R ◦ P ◦ S ⊇ { monotonicity }
P ◦ GR ◦ S

⊇ { monotonicity }
P ◦ S ◦ GFR

Partiality, or constraint on solutions, is difficult to deal with. One solvent is to
retain a set of minimals such that at least one will satisfy the constraint.

Lemma 4.8. Given a predicate p :A→ Bool , let g be a function such that p is more
collapsing than g. Then, a relation p? is completely monotonic on a relation R∩=g

for any relation R.

Proof. First we prove that a=g b implies p(a) = p(b).

a=g b ⇒ { definition of =g }
g(a) = g(b)

⇒ { p is more collapsing than g }
p(a) = p(b)

Then, the claim apparently holds for the case of monotonicity, and since
R ∩ =g

< =
R
< ∩ =g holds, so does for the case of strictly monotonicity.

By combining Lemma 4.8 with Lemma 4.7, we can obtain monotonicity condition
for partial functions in ease: decompose a partial function into a total function and
a predicate that stands for the domain of the function; then, these two lemmas
show a way to derive monotonicity condition. The point is to explicitly specify the
partiality by a predicate.

Let us demonstrate the effectiveness of our lemmas. As an example, consider a
work planning problem. We would like to plan our schedule of working. For each
day, we can choose one of three choices: hard work, moderate work, and rest. Hard
work will result in much profit, while we should take a rest in the next day of the
hard work. Let hi and mi be respectively the profits of hard work and moderate
work of the ith day. Then, given values of h1, . . . , hn,m1, . . . ,mn, we would like to
obtain the best schedule that yields the maximum profit for the next n days.

In this problem, a candidate is a schedule, which is a sequence of the way of
work. Deciding a daily schedule for each day is formalized as the following relation
schedule.

([a] ++ x, x) ∈ schedule
def
⇐⇒ a ∈ {Hard ,Moderate,Rest} ∧ (notHard(x) ∨ a = Rest)

notHard([Hard ] ++ x)
def
= False

notHard(−)
def
= True
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Then, we can generate a schedule for the next n days by Λ(schedulen)([ ]). Now
we would like to find a quasi-order on which schedule is monotonic for utilizing
the thinning theorem. First, decompose schedule into total functions and filters as
follows.

schedule = (addHard ◦ notHard?) ∪ (addMod ◦ notHard?) ∪ addRest

addHard(x)
def
= [Hard ] ++ x

addMod(x)
def
= [Moderate] ++ x

addRest(x)
def
= [Rest ] ++ x

Note that all of addHard , addMod , and addRest are total functions. Let P be
the order to compare profit; then, from Lemma 4.8, notHard? is monotonic on
P∩=notHard . It is easy to confirm that addHard , addMod , and addRest are monotonic
on P ∩ =notHard , which is equivalent to that they are monotonic on (P ∩ =notHard)◦

because of Lemma 4.5. Therefore, from Lemmas 4.6 and 4.7, schedule is monotonic
on (P ∩=notHard)◦. In other words, we can obtain optimal scheduling by considering
a case analyses in which we distinguish whether we worked hard in the previous day.

4.1.2 Constructing Monotonic Orders

We have examined structures to generate candidates. Next, let us consider structures
of orders that we would like to optimize.

First, equivalence relations satisfy good properties.

Lemma 4.9. Any relation is strictly monotonic on any equivalence relation.

Proof. It is evident from that any equivalence relation has no strict part.

Lemma 4.10. Any relation is completely monotonic on the equivalence relation =.

Proof. For any relation R, a = b implies ΛR(a) = ΛR(b), and thus, R is monotonic
on =. From Lemma 4.9, any relation is strictly monotonic on =. In summary, any
relation is completely monotonic on =.

Monotonicity conditions are closed under intersections of orders, which is useful
to construct a weaker order.

Lemma 4.11. For a relator F and relations R and S, a function f : FA→ A is
monotonic on R ∩ S, if f is monotonic on S and (S ⇒ R) ◦ f ⊇ f ◦ FR holds.

Proof.
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(R ∩ S) ◦ f ⊇ f ◦ F(R ∩ S)
⇐ { Lemma 2.6 }

(R ∩ S) ◦ f ⊇ f ◦ (FR ∩ FS)
⇔ { R ∩ S = (S ⇒ R) ∩ S }

((S ⇒ R) ∩ S) ◦ f ⊇ f ◦ (FR ∩ FS)
⇔ { f is simple }

((S ⇒ R) ◦ f) ∩ (S ◦ f) ⊇ f ◦ (FR ∩ FS)
⇐ { premise }

(f ◦ FR) ∩ (f ◦ FS) ⊇ f ◦ (FR ∩ FS)
⇔ { property of intersections }

(f ◦ FR ⊇ f ◦ (FR ∩ FS)) ∧ (f ◦ FS ⊇ f ◦ (FR ∩ FS))
⇔ { trivial (∩) }

True

Lemma 4.12. For a relator F and relations R and S, a function f :FA→ A is strictly

monotonic on R∩S, if f is strictly monotonic on S and (
S
<⇒

R
<)◦ f ⊇ f ◦

FR
< holds.

Proof. The proof is almost the same as that of Lemma 4.11.

Lemma 4.13. For a relator F and relations R and S, a function f : FA→ A is
monotonic (strictly monotonic, completely monotonic) on R ∩ S, if f is monotonic
(strictly monotonic, completely monotonic) on both R and S.

Proof. It is evident from Lemmas 4.11 and 4.12 because (S ⇒ R) ⊇ R holds.

It is worth noting that Lemmas 4.11, 4.12, and 4.13 show effectiveness of use of
functions instead of relations.

Next is about sequential compositions of orders.

Lemma 4.14. Given a polynomial functor F and relations R and S, a function
f :FA→ A is monotonic (strictly/completely monotonic) on R ;S, if f is completely
monotonic on S and monotonic (strictly/completely monotonic) on R.

Proof. First we prove the monotonic case.

(R ;S) ◦ f ⊇ f ◦ F(R ;S)
⇔ { definition of R ;S }

(S ∩ (S◦ ⇒ R)) ◦ f ⊇ f ◦ F(S ∩ (S◦ ⇒ R))
⇐ { F is polynomial, and Lemmas 2.6 and 2.9 }

(S ∩ (S◦ ⇒ R)) ◦ f ⊇ f ◦ (FS ∩ (FS◦ ⇒ FR))
⇔ { definition of ⇒ and distributivity }

((S ∩ S◦) ∪ (S ∩R)) ◦ f ⊇ f ◦ ((FS ∩ FS◦) ∪ (FS ∩ FR))
⇔ { distributively of compositions over unions }

((S ∩ S◦) ◦ f) ∪ ((S ∩R) ◦ f) ⊇ (f ◦ (FS ∩ FS◦)) ∪ (f ◦ (FS ∩ FR))
⇐ { trivial (∪) }

((S ∩ S◦) ◦ f ⊇ f ◦ (FS ∩ FS◦)) ∧ ((S ∩R) ◦ f ⊇ f ◦ (FS ∩ FR))
⇐ { Lemma 4.13 and the premise }

True
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Next we prove the strictly monotonic case.

R ;S
< ◦ f ⊇ f ◦

F(R ;S)
<

⇐ { Lemmas 4.26 and 4.27 }

(
R
< ;S) ◦ f ⊇ f ◦ (

FS
< ∪ (FS ∩

FR
<)

⇔ { definition of
R
< ;S }

(
S
< ∪ (S ∩

R
<)) ◦ f ⊇ f ◦ (

FS
< ∪ (FS ∩

FR
<))

⇐ { the premises, and do similar calculation to the previous case }
True

The completely monotonic case follows from the two results.

Lemma 4.14 is useful in practice. An order R ;S is used to solve multi-objective
optimization problems, in which one would like to find R-minimum elements in the
S-minimum elements.

Let us consider examples borrowed from [MPRS99]. Consider a graph in which
each edge has two weights, cost and capacity. The cost of a path is the sum of the
costs of edges in the path, and the capacity of a path is the minimum capacity of
edges. Now consider finding the minimum-cost path or the maximum-capacity path
between given two vertexes. We may construct candidates of solutions by extending
paths one by one, and thus, we would like to know whether an extension of a path
satisfies monotonicity conditions. For the minimum-cost path problem, an extension
of a path is completely monotonic; for two paths p1 and p2 of the same destination,
where the cost of p1 is strictly less than (or equal to) that of p2, the cost of p1 ++ [e]
is certainly strictly less than (equal to) p2 ++ [e]. For the maximum-capacity path
problem, an extension of a path is monotonic but not strictly monotonic; for two
paths p1 and p2 of the same destination, where the capacity of p1 is strictly less than
that of p2, the capacity of p1 ++ [e] is less than or equal to p2 ++ [e]. The observation
above and Lemma 4.14 indicate an efficient algorithm to find the maximum-capacity
path among the minimum-cost paths; however, it might be difficult to find the
minimum-cost path among the maximum-capacity paths, because Lemma 4.14 is
not applicable.

Well, let us consider objective functions that map candidates onto an ordered
set. Objective functions are useful to describe criterion of optimality. In fact, the
notion of objective functions is also useful to obtain monotonicity condition. Later
in Chapter 5, we will demonstrate effectiveness of description of objective functions
for constructing efficient algorithms.

The following lemmas provide a way to check whether Rf satisfies monotonicity
properties, in which f corresponds to an objective function.

Lemma 4.15 (variant of Proposition 9.2 of [BdM96]). For a relator F, a total func-
tion f :B → A, and relations R :A↔ A, S :FB ↔ B, and S ′ :FA↔ A, assume that
f is incremental on S by S ′. Then, S is monotonic (strictly monotonic, completely
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monotonic) on Rf if and only if S ′ is monotonic (strictly monotonic, completely
monotonic, respectively) on R on the range of Ff .

Proof. We prove the case of monotonicity. Others are similar.

Rf ◦ S ⊇ S ◦ FRf ⇔ { definition of Rf }
f ◦ ◦R ◦ f ◦ S ⊇ S ◦ F(f ◦ ◦R ◦ f)

⇔ { property of total functions (2.3) }
R ◦ f ◦ S ⊇ f ◦ S ◦ F(f ◦ ◦R ◦ f)

⇔ { premise }
R ◦ S ′ ◦ Ff ⊇ S ′ ◦ Ff ◦ Ff ◦ ◦ FR ◦ Ff

⇔ { property of total functions (2.4) }
R ◦ S ′ ⊇ S ′ ◦ Ff ◦ Ff ◦ ◦ FR ◦ Ff ◦ Ff ◦

⇐ { Ff is a function; thus Ff ◦ Ff ◦ ⊆ id . }
R ◦ S ′ ⊇ S ′ ◦ FR

Lemma 4.16. For a relation S and a total function f , S is completely monotonic
on =f if and only if f is incremental on S.

Proof. It is a direct consequence of Lemmas 4.10 and 4.15.

Lemmas 4.15 and 4.16 demonstrate that incrementality is a key to confirming
monotonicity conditions. In fact, we will make intensive use of Lemma 4.16 to derive
efficient algorithms.

The following lemma shows a similar result, which enables us to deal with ob-
jective functions whose value depends on contextual values.

Lemma 4.17. Given a relator F, a total function f :B → A, function h : FB → B,
and a relation R : A↔ A, assume that there exist functions g : B → C and h′ :
F(A× C) → A such that g is incremental on h and both of f ◦ h = h′ ◦ F(f △ g) and
R ◦ h′ ⊇ h′ ◦ F(R× id) hold. Then, h is monotonic on Rf ∩ =g.

Proof.

(Rf ∩ =g) ◦ h ⊇ h ◦ F(Rf ∩ =g)
⇔ { h is simple }

(Rf ◦ h) ∩ (=g ◦ h) ⊇ h ◦ F(Rf ∩ =g)
⇔ { property of intersections }

(Rf ◦ h ⊇ h ◦ F(Rf ∩ =g)) ∧ (=g ◦ h ⊇ h ◦ F(Rf ∩ =g))
⇐ { Lemma 4.16 }

(Rf ◦ h ⊇ h ◦ F(Rf ∩ =g)) ∧ (h ◦ F=g ⊇ h ◦ F(Rf ∩ =g))
⇐ { Lemma 2.6 }

Rf ◦ h ⊇ h ◦ F(Rf ∩ =g)
⇔ { Lemma 4.24 }

True
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The equation f ◦h = h′ ◦F(f △g) means that the result of g is necessary together
with the result of f for incremental execution of the objective function f on the
generation of candidates h. In other words, the objective function f uses contextual
information computed by g. Lemma 4.17 shows a way to derive efficient algorithms
for such cases.

Now, let us demonstrate a use of Lemma 4.17 by another planning problem.
Consider that we are managing a supercomputer, which can process a certain amount
of data par day. However, because of bugs of software, the processing speed becomes
slower day by day, and thus, we must repair the supercomputer periodically. Given
an expectation of amounts of available data for the next month, we would like to
obtain the best scheduling for repairing the computer so that we can maximize the
amount of data processed.

We express a schedule as a sequence of {Repair(d),Work(d)}, where d is the
amount of available data, and generate a schedule by a relation to decide daily
schedules, which will be denoted by repair ∪ work .

schedule = repair ∪ work
work(a, x) = [Work(a)] ++ x
repair(a, x) = [Repair(a)] ++ x

The difficulty of this problem is that the value of objective function depends not
only the amount of available data but also the processing speed. Let process(k)
be the processing speed of the computer that has been working consecutively for k
days. Then, given a schedule, the objective function amount is specified as follows.

amount([ ])
def
= 0

amount([Work(d)] ++ x)
def
= (d ↓ process(working(x))) + amount(x)

amount([Repair(d)] ++ x)
def
= amount(x)

working([ ])
def
= 0

working([Work(d)] ++ x)
def
= 1 + working(x)

working([Repair(d)] ++ x)
def
= 0

It is natural to introduce an auxiliary function working for defining the objec-
tive function amount . This indicates that there exists a function work ′ such that
amount(work([a] ++ x)) = work ′(a, (amount △ working)(x)) holds, and in fact, the
following function work ′ satisfies the requirement.

work ′(Work(d), (r, k)) = (d ↓ process(k)) + r
work ′(Repair(d), (r, k)) = r

Next, observe that the schedule generating functions are monotonic on ≤amount if we
could regard the value of working to be constant, i.e., r ≤ r′ implies work ′(a, (r, k)) ≤
work ′(a, (r′, k)); in addition, working is incremental on schedule generating func-
tions. In summary, Lemma 4.17 is applicable for this problem and derives an ef-
ficient algorithm that distinguishes each solution by the number of days that the
computer has been consecutively working for.
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We have explained how to obtain appropriate orders constructively. As a remark,
we would like to mention well-supportedness. The proposed constructions preserve
well-supportedness, as the following lemmas show; thus, we can use constructed
orders without caring well-supportedness.

Lemma 4.18. Any equivalence relation is well-supported.

Proof. It is evident because ΛmnlE = id holds when E is an equivalence relation.

Lemma 4.19 ([BdM92]). For any polynomial functor F, function f , and well-
supported relations R and S, Rf , R ∩ S, R ;S, and FR are well-supported.

4.1.3 Deriving Dynamic Programming Algorithms

So far, we have introduced several laws for confirming and obtaining monotonicity
conditions. As a summary of our laws, here we introduce calculational laws that are
useful to solve a class of combinatorial optimization problems.

The first one is the following theorem.

Theorem 4.20 (derivation of dynamic programming algorithms). The following are
given: an index set I; predicates p :A→ Bool and qi : FA→ Bool (i ∈ I); functions
fi :FA→ A (i ∈ I), gp :FA→ C, and gq :FA→ D; a quasi-order R :A↔ A. Assume
the following three: (1) each function fi is monotonic on R; (2) p and each qi are
respectively more collapsing than gp, and gq; (3) both gp and gq are incremental on

each fi. Then, the following equations hold, where R′ is defined as R′ def
= R∩=gp

∩=gq
.

minR ◦ p△ ◦ Λ([
⋃

i∈I

(fi ◦ qi?)]) ⊇ minR ◦ p△ ◦ ([thinR′ ◦ Λ(
⋃

i∈I

(fi ◦ qi?) ◦ F∈)])

minR ◦ p△ ◦ Λ(
⋃

i∈I

(fi ◦ qi?))∗ ⊇ minR ◦ p△ ◦ (thinR′ ◦ Λ(
⋃

i∈I

(fi ◦ qi?) ◦ ∈))∗ ◦ {·}

Proof. From Lemma 4.28, minR ◦ p△ = p? ◦ minR ;�p
holds, where � is the linear

order on which True is strictly smaller than False. Because of Lemma 4.29 and
the premise that p is more collapsing than gp, R ;�p ⊇ R ∩ =p ⊇ R ∩ =gp

⊇ R′

holds. Thus, from the thinning theorem (Theorem 3.17 or Theorem 3.18), it is
sufficient to prove that

⋃
i∈I(fi ◦ qi?) is monotonic on R′◦, which is a consequence of

the combination of Lemmas 4.5, 4.6, 4.7, 4.8, 4.13, and 4.16.

Theorem 4.20 provides a way to solve a wide class of combinatorial optimization
problems. We can read the theorem as follows. First, we can solve a simple problem
to find an R-minimum element without any requirement on solutions. The prob-
lem will be solved easily, because each fi is monotonic on R. Then, the theorem
states that we can solve a more complicated problem having additional constraint
by considering appropriate case analyses.

Since Theorem 4.20 is formalized in terms of thin, we need to provide an imple-
mentation of thin. When R is well-supported, we can adopt ΛmnlR′ for this purpose
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because of Lemmas 4.18 and 4.19. In the following, we implicitly assume that R is
well-supported and consider that thinR′ is implemented by ΛmnlR′ .

Theorem 4.20 states that (R∩=gp
∩=gq

)-minimal solutions are sufficient to obtain
an optimal solution if the premises are satisfied. Notice that (R ∩ =gp

∩ =gq
) is the

order where two candidates a and b are compared by R if and only if both elements
belong to the same equivalent class of =gp

∩ =gq
, i.e., gp(a) = gp(b) ∧ gq(a) = gq(b)

holds. Therefore, the derived programs can be recognized as dynamic programming
algorithms. In each recursion, we fill a table whose key and value are respectively
an equivalent classes of =gp

∩ =gq
and R-minimal solutions of in the class.

Let us examine the time complexity of the resulted programs of Theorem 4.20.
Assume all of the costs to compute each fi, gp, gq, R, and p to be constant, and
let k be the number of equivalent classes of =gp

∩ =gq
. In addition, assume R is a

linear order; then, it is sufficient to keep only one element for each equivalent class,
and thus, k candidates are considered in each step. Now the time complexity of the
derived programs is O(knI), where n is the number of recursions, which is the size
of the input structure for the case of catamorphisms, and I is the number of choices
of each step. Since parameters except k are determined from the specification, the
choices of gp and gq determine the efficiency of the derived program. If R is not a
linear order, the theorem might not be effective. For example, thinR′ can discard no
candidate when R is an equivalence relation. But the theorem is usually effective
in practice. It is worth noting that memoization may improve efficiency, especially
the solutions are large structures and each choice corresponds to a construction of
a structure.

Theorem 4.20 is a generalization of the results about maximum marking prob-
lems. Recall Theorem 3.21, where the constraint is (accept ◦foldr⊕,e)△. Observe that
foldr⊕,e, which is less collapsing than accept ◦ foldr⊕,e (Lemma 4.2), is incremental on
the generation of markings. Therefore, Theorem 4.20 is applicable for the maximum
marking problems considered here, and yields linear-time algorithms if the range of
foldr⊕,e is finite. In short, incrementality condition is the key to efficient algorithms.

By virtue of the calculational laws we have prepared, we can prove several vari-
ants of Theorem 4.20. For example, we can prove that the following equation holds
under a similar premise to Theorem 4.20, in which strict monotonicity is required
instead of monotonicity.

ΛmnlR ◦ p△ ◦ Λ([
⋃

i∈I

(fi ◦ qi?)]) = ΛmnlR ◦ p△ ◦ ([ΛminR′ ◦ Λ(
⋃

i∈I

(fi ◦ qi?) ◦ F∈)])

Moreover, it is not difficult to extend Theorem 4.20 so as to deal with multi-objective
optimization problems. The following is one for the case of catamorphisms.

Theorem 4.21. The following is given: an index set I; predicates pj (1 ≤ j ≤ k) and
qi (i ∈ I); functions fi (i ∈ I), gpj

(1 ≤ j ≤ k), and gqi
(i ∈ I); total well-supported

quasi-orders Rj (1 ≤ j ≤ k). Assume the following three: (1) each function fi is
completely monotonic on each Rj; (2) each pj and each qi are respectively more
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collapsing than gpj
and gqi

; (3) all of gpj
and gqi

are incremental on each fi. Then,
the following equation holds.

ΛmnlR1
◦ p1

△ ◦ · · · ◦ ΛmnlRk
◦ pk

△ ◦ Λ([
⋃

i∈I(fi ◦ qi?)])
= ΛmnlR1

◦ p1
△ ◦ · · · ◦ ΛmnlRk

◦ pk
△ ◦ ([ΛmnlR′ ◦ Λ(

⋃
i∈I(fi ◦ qi?) ◦ F∈)])

R′ def
= (R1 ;R2 ;· · · ;Rk) ∩ (

⋂
1≤j≤k =gpj

) ∩ (
⋂

i∈I =gqi
).

Proof. The proof is similar to that of Theorem 4.20, and we just outline it. Let �
be the order on which True is strictly smaller than False.

ΛmnlR1
◦ p1

△ ◦ · · · ◦ ΛmnlRk
◦ pk

△ ◦ Λ([
⋃

i∈I(fi ◦ qi?)])
= { pushing out filters (Lemma 4.28) }
p1

△ ◦ · · · ◦ pk
△ ◦ ΛmnlR1 ;�p1

;··· ;�pk
◦ · · · ◦ ΛmnlRk ;�pk

◦ Λ([
⋃

i∈I(fi ◦ qi?)])
= { compressing minimals (Lemma 4.31: note Ri ;�pi

;· · · ;�pk
is total) }

p1
△ ◦ · · · ◦ pk

△ ◦ Λmnl (R1 ;�p1
;··· ;�pk

) ;··· ;(Rk ;�pk
) ◦ Λ([

⋃
i∈I(fi ◦ qi?)])

= { minimal-based thinning theorem (Theorem 3.19) }
p1

△ ◦ · · · ◦ pk
△ ◦ Λmnl (R1 ;�p1

;··· ;�pk
) ;··· ;(Rk ;�pk

) ◦ ([ΛmnlR′ ◦ Λ(
⋃

i∈I(fi ◦ qi?) ◦ F∈)])

= { inverse of the steps above }
ΛmnlR1

◦ p1
△ ◦ · · · ◦ ΛmnlRk

◦ pk
△ ◦ ([ΛmnlR′ ◦ Λ(

⋃
i∈I(fi ◦ qi?) ◦ F∈)])

4.2 Deriving Algorithms for Shortest Path Prob-

lems and Their Variants

In this section, we demonstrate effectiveness of our calculational laws through deriva-
tions of algorithms for shortest path problems and their variants. Here we con-
sider three kinds of problems: shortest path problems, regular-language-constrained
shortest path problems [Rom88, BJM00], and resource-constrained shortest path
problems [Jok66].

We assume that there is no cycle whose weight is negative in the underlying
graph. Then, all quasi-orders used here are well-supported, because weights of
paths are lower bounded. Therefore, we can use ΛmnlR to implement thinR, and
actually we implicitly recognize thinR as ΛmnlR.

4.2.1 Shortest Path Problems

As seen in Chapter 3, the following is the specification of the shortest path problem,
where s is the source and t is the destination.

SP
def
= (min≤w

◦ endWitht
△ ◦ froms

△ ◦ Λ(
⋃

e∈E

extend e)∗) [ ]

extend e(p)
def
= p++ [e] if dst(p) = hd(e)

endWithv(p)
def
= dst(p) = v

froms([ ])
def
= False

froms([e] ++ p)
def
= hd(e) = s
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For simplicity of presentations, we treat dst([ ])
def
= s in this section. Then, the

definition of the shortest path problem is simplified as follows.

SP = (minW ◦ endWitht
△ ◦ Λ(

⋃
e∈E extend e)∗) [ ]

Bellman-Ford Algorithm

The specification shown above is already in a form that Theorem 4.20 is applicable.
Let us confirm the premises of the theorem.

The first one is the monotonicity condition. To avoid treating partial functions
extend e, we decompose each extend e into a total function addEdgee with a predicate
endWithv.

extend e = addEdgee ◦ endWithhd(e)?

addEdgee(p, v)
def
= p++ [e]

The predicate endWithhd(e) checks whether we can extend a path by adding edge e,
and addEdgee really extends a path by adding edge e. It is evident that addEdgee

is completely monotonic on ≤w.
Next, it is necessary to prepare a function that is less collapsing than endWithv

and incremental on addEdgee. Observe that endWithv only cares destinations rather
than whole paths. Therefore, dst is less collapsing than endWithv. Let us confirm
the incrementality condition.

(dst ◦ addEdgee)(p) = { definition of addEdgee }
dst(p++ [e])

= { definition of dst }
tl(e)

= { Let ge(−)
def
= tl(e) }

(ge ◦ dst)(p)

Thus, dst is certainly incremental on each addEdgee.
Now that all premises of Theorem 4.20 is fulfilled, the theorem enables us to

obtain a dynamic programming algorithm.

SP = { definition of SP }
(min≤w

◦ endWitht
△ ◦ Λ(

⋃
e∈E extend e)∗) [ ]

= { decompose extend e }
(min≤w

◦ endWitht
△ ◦ Λ(

⋃
e∈E(addEdgee ◦ endWithhd(e)?))∗) [ ]

= { Theorem 4.20 }
(min≤w

◦ endWitht
△ ◦

(thin≤w∩=dst
◦ Λ(

⋃
e∈E(addEdgee ◦ endWithhd(e)?) ◦ ∈))∗) {[ ]}

= { folding extend e }
(min≤w

◦ endWitht
△ ◦ (thin≤w∩=dst

◦ Λ(
⋃

e∈E extend e ◦ ∈))∗) {[ ]}

The quasi-order ≤w ∩=dst compares paths if their destination is the same; thus the
derived algorithm recursively computes candidates of shortest paths from s to every
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vertex, until we cannot find better paths any more. This algorithm is exactly the
Bellman-Ford algorithm, whose time complexity is O(V E).

Dijkstra Algorithm

Dijkstra algorithm is effective when weights of edges are positive. The idea is to
delay considering paths that may not be optimal. To express such delay, we give a
counter that counts the number of repetitions accomplished.

SP = (min≤w
◦ endWitht

△ ◦ Pπ1 ◦ Λ(next ∪
⋃

e∈E extendDe)∗) ([ ], 0)

extendDe(p, k)
def
= (p++ [e], k + 1) if hd(e) = dst(p) ∧ k ≥ χ(tl(e))

next(p, k)
def
= (p, k + 1)

The function extendDe does not construct a path to the vertex tl(e) until the
χ(tl(e))-th repetition, and the function χ : V → Z+ manages the delay. Note that
the expression Pπ1 ◦ Λ(

⋃
e∈E extendDe)∗ certainly enumerates all paths, because

extendDe does equivalent computation to extend e after sufficient number of repeti-
tions.

We cannot apply Theorem 4.20 directly to the equation above; thus, let us
calculate a bit.

SP = { delayed variant of SP }
(min≤w

◦ endWitht
△ ◦ Pπ1 ◦ Λ(next ∪

⋃
e∈E extendDe)∗) ([ ], 0)

= { trivial (projection and map) }
(Pπ1 ◦ min≤w◦π1

◦ (endWitht ◦ π1)△ ◦ Λ(next ∪
⋃

e∈E extendDe)∗) ([ ], 0)

We have derived a form that Theorem 4.20 is applicable to, and we would like to
confirm the premises.

First, decompose extendDe into a total function with a filter.

extendDe = addEdge ′
e ◦ properDe?

addEdge ′
e(p, k)

def
= (p++ [e], k + 1)

properDe(p, k) = endWithhd(e)(p) ∧ k ≥ χ(k)

It is easy to see that addEdge ′ is completely monotonic on ≤w◦π1
.

Since properDe is more collapsing than (dst × id), we would like to confirm the
incrementality condition. It is trivial to confirm that (dst × id) is incremental on
next . It is also incremental on addEdge ′, as the following calculation shows.

((dst × id) ◦ addEdge ′
e) (p, k) = { definition of addEdge ′

e }
(dst × id)(p++ [e], k + 1)

= { definition of dst }
(tl(e), k + 1)

= { Let ge(−, k)
def
= (tl(e), k + 1) }

(ge ◦ (dst × id))(p, k)
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In addition, endWitht ◦ π1 is also more collapsing than (dst × id). In summary, an
algorithm is derived as follows.

SP
= (Pπ1 ◦ min≤w◦π1

◦ (endWitht ◦ π1)△ ◦ Λ(next ∪
⋃

e∈E extendDe)∗) ([ ], 0)
= { decompose extendDe }

(Pπ1 ◦ min≤w◦π1
◦ (endWitht ◦ π1)△

◦ Λ(next ∪
⋃

e∈E(addEdge ′
e ◦ properDe?))∗) ([ ], 0)

= { Theorem 4.20, and let W
def
= ≤w◦π1

∩ =(dst×id) }
(Pπ1 ◦ min≤w◦π1

◦ (endWitht ◦ π1)△

◦ (thinW ◦ Λ(next ∪
⋃

e∈E(addEdge ′
e ◦ properDe?) ◦ ∈))∗) {([ ], 0)}

= { folding extendDe and trivial (projection and map) }
(min≤w

◦ endWitht
△ ◦ Pπ1 ◦ (thinW ◦ Λ(next ∪

⋃
e∈E extendDe ◦ ∈))∗) {([ ], 0)}

In the calculation, we did not use any specific property of χ. This fact tells us
that the correctness of the derived algorithm does not depend on selection of χ. In
Dijkstra algorithm, χ results in the near-order ranking from the source vertex. Since
all weights are positive, the nearest vertex that has not been visited yet is certainly
the next nearest vertex in each step of computation. The time complexity of Dijkstra
algorithm is O(V log V + E), if we implement it efficiently using a Fibonacci heap.
A∗ search algorithms are also delayed variant but uses another delay.

4.2.2 Regular-Language-Constrained Shortest Path Prob-

lems

Next, let us consider a bit more complicated problems, regular-language-constrained
shortest path problems [Rom88, BJM00]. Regular-language-constrained shortest
path problems are the problems to compute the shortest path among those whose
label is in a regular language. The following is the formal definition of the regular-
language shortest path problems.

Definition 4.22 (regular-language-constrained shortest path problem). Given a
graph G = (V,E) with a weight function w:E → R and a labeling function l:E → Σ,
a source s ∈ V , a destination t ∈ V , and a regular language L, a regular language
constrained shortest path problem is the problem to find the shortest path p from s
to t satisfying l(p) ∈ L.

Let us consider a DFA A = (S,Σ, τ, SI , SF ) such that LA = L to formalize the
problem in a calculational style. The calculational definition of the regular-language-
constrained shortest path problem, denoted by LSP , is the following.

LSP
def
= (min≤w

◦ accept△ ◦ endWitht
△ ◦ Λ(

⋃

e∈E

extend e)∗) [ ]

accept(p)
def
= rpA(l(p)) ∈ SF

The definition is almost the same as that of shortest path problems, except for the
additional constraint accept .
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Label-correcting Algorithm

First, let us derive a label-correcting (Bellman-Ford like) algorithm.
Since regular-language-constrained problem has plural constraints, use of Theo-

rem 4.21 would be appropriate. It is worth noting that we can reuse the calculation
in the previous subsection, and it is sufficient to find a function that is less collapsing
than accept and incremental on addEdge. From the definition of accept , rpA ◦ l is
an apparent candidate: accept is more collapsing than rpA ◦ l from Lemma 4.2. Let
us calculate to confirm its incrementality condition.

(rpA ◦ l ◦ addEdgee)(p) = { definition of addEdgee and l }
rpA(l(p) ++ [l(e)])

= { definition of rp }
τ(rpA(l(p)), l(e))

= { Let τ ′e(x)
def
= τ(x, l(e)) }

(τ ′e ◦ rpA ◦ l)(p)

Now that all premises are confirmed, Theorem 4.21 derives the following program,

where the quasi-order W ′ is defined as W ′ def
= ≤w ∩ =dst ∩ =rpA◦l.

(min≤w
◦ accept△ ◦ endWitht

△ ◦ (thinW ′ ◦ Λ(
⋃

e∈E

extend e ◦ ∈))∗) {[ ]}

In the program, paths are compared only if both of their destinations and repre-
sentative states are the same. The time complexity of the derived algorithm is
O(S2V E).

From other point of view, the program seeks the shortest path on a new graph
whose each vertex corresponds to an element of E × S. In other words, the new
graph corresponds to the product of the original graph and the DFA A. Recognize
the original graph as an NFA that accepts a sequence of edges if and only if it is a
path from s to t on the graph. Then, the product of the NFA and A is an automaton
that accepts paths from s to t whose label is in L. The derived program looks for the
minimum-weighed transition from the initial state to a finial state on the product.
This idea was pointed out by Romeuf [Rom88].

Label-setting Algorithm

Next, let us consider a label-setting (Dijkstra-like) algorithm. Since it is sufficient
to solve shortest path problems on the graph obtained by product construction, Di-
jkstra algorithm will be applicable when weights of edges are positive. Let us con-
firm this observation by calculating a label-setting algorithm for regular-language-
constrained shortest path problems.

As similar to the previous case, most of premises to apply Theorem 4.21 have
been confirmed in the previous section, and thus, it is sufficient to confirm incre-
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mentality condition of rpA ◦ l ◦ π1 on addEdge ′
e.

(rpA ◦ l ◦ π1 ◦ addEdge ′
e)(p, k) = { definition of addEdge ′

e, π1 and l }
rpA(l(p) ++ [l(e)])

= { definition of rp }
τ(rpA(l(p)), l(e))

= { Let τ ′e(x)
def
= τ(x, l(e)) }

(τ ′e ◦ rpA ◦ l ◦ π1)(p, k)

Now that we have confirmed the incrementality condition, Theorem 4.21 derives the

following program, where the quasi-order W ′′ is defined as W ′′ def
= ≤W◦π1

∩=(dst×id)∩
=rpA◦l◦π1

.

(min≤w
◦accept△◦endWitht

△◦Pπ1◦(thinW ′′ ◦ Λ(next ∪
⋃

e∈E

extendDe ◦ ∈))∗) {([ ], 0)}

Now that we have confirmed the correctness of delayed variants, we can obtain a
Dijkstra-like algorithm by choosing an appropriate delay. The time complexity of
the derived algorithm is O(SV log(SV ) + SE), if we implement it efficiently using
a Fibonacci heap. As the calculation shows, we can also use another searching
algorithms such as A∗ algorithms.

The point is that the delay by χ does not affect representative states of the DFA
A. In other words, we can consider improvement of efficiency, namely changing a
way to search shortest paths, independently from the constraint.

4.2.3 Resource-Constrained Shortest Path Problems

As the final example in this chapter, let us consider another variant of shortest
path problems, resource-constrained shortest path problems [Jok66]. Resource-
constrained shortest path problems are problems to compute the shortest path whose
cost is less than the given limit.

Definition 4.23 (resource-constrained shortest path problem). Given a graph G =
(V,E) with a weight function w : E → R and a cost function c : E → Z+, a source
s ∈ V , a destination t ∈ V , and the limit C ∈ N, a resource-constrained shortest
path problems is the problem to find the shortest path p from s to t such that
c(p) ≤ C.

The following is the calculational definition.

CSP
def
= (min≤w

◦ costlessC
△ ◦ endWitht

△ ◦ Λ(
⋃

e∈E

extend e)∗) [ ]

costlessC(p)
def
= c(p) ≤ C
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Label-correcting algorithm

Let us derive a label correcting algorithm. We would like to go similar way to the
case of regular-language-constrained shortest path problems; however, in this case,
it is better to calculate a bit in advance.

CSP
= { definition }

(min≤w
◦ costlessC

△ ◦ endWitht
△ ◦ Λ(

⋃
e∈E extend e)∗) [ ]

= { trivial (filter and power-transpose) }
(min≤w

◦ endWitht
△ ◦ Λ(costless? ◦ (

⋃
e∈E extend e)∗) [ ]

= { Theorem 2.22 (the premise will be confirmed later) }
(min≤w

◦ endWitht
△ ◦ Λ(

⋃
e∈E(costlessC? ◦ extend e))∗ ◦ costlessC?) [ ]

= { costlessC([ ]) = True, and unfolding extend e }
(min≤w

◦ endWitht
△ ◦ Λ(

⋃
e∈E(costlessC? ◦ addEdgee ◦ endWithhd(e)?))∗) [ ]

= { costlessC ◦ addEdgee = addEdgee ◦ costlessC−c(e) }
(min≤w

◦ endWitht
△ ◦ Λ(

⋃
e∈E(addEdgee ◦ costlessC−c(e)? ◦ endWithhd(e)?))∗) [ ]

The premise of Theorem 2.22 is the following equation, which is evident because the
cost of each edge is positive.

costlessC? ◦
⋃

e∈E extend e = costlessC? ◦ (
⋃

e∈E extend e) ◦ costlessC?

Well, let us use Theorem 4.21. It is sufficient to find a function that is less
collapsing than costlessC−c(e) and incremental on addEdge. Apparently, the function
c, which computes the cost of a path, is less collapsing than costlessC−c(e). In
addition, the function c satisfies the incrementality condition.

(c ◦ addEdgee)(p) = { definition of addEdgee and c }
c(p) + c(e)

= { let ge(n)
def
= c(e) + n }

(ge ◦ c)(p)

All premises have been confirmed, and Theorem 4.21 derives the following algorithm,

where the quasi-orderW † def
= ≤w∩=dst∩=c is used to discard unnecessary candidates.

CSP = (min≤w
◦ endWitht

△ ◦ (thinW † ◦ Λ(
⋃

e∈E

(extend e ◦ costlessC−c(e)?) ◦ ∈))∗) {[ ]}

The order W † compares paths of the same destination and cost. Thus, the derived
algorithm computes candidates from the source vertex to every vertex of every cost
recursively, until no better paths are found. This is a known dynamic-programming
algorithm [Jok66], and its time complexity is O(C2V E).
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Label-setting algorithm

We can improve the efficiency by a label-setting algorithm when weights of edges are
positive. The calculation is summarized as follows. Though the calculation seems a
bit complicated, each step is almost the same as the calculations we have seen.

CSP
= { definition of CSP (delayed variant) }

(min≤w
◦ costlessC

△ ◦ endWitht
△ ◦ Pπ1 ◦ Λ(next ∪

⋃
e∈E extendDe)∗) ([ ], 0)

= { let opt = π1 ◦ min≤w◦π1
◦ (endWitht ◦ π1)△ }

(opt ◦ (costlessC ◦ π1)△ ◦ Λ(next ∪
⋃

e∈E extendDe)∗) ([ ], 0)
= { Theorem 2.22 }

(opt ◦ Λ(next ∪
⋃

e∈E(extendDe ◦ (costlessC−c(e) ◦ π1)?))∗) ([ ], 0)
= { Theorem 4.20, where W ‡ =≤w◦π1

∩ =(dst×id) ∩=c◦π1
}

(opt ◦ (thinW ‡ ◦ Λ(next ∪
⋃

e∈E(extendDe ◦ (costlessC−c(e) ◦ π1)?) ◦ ∈))∗) {([ ], 0)}

Since we have confirmed the correctness of the delayed algorithm, Dijkstra-like
search yields an efficient algorithm whose time complexity is O(CV log(CV )+CE).
We can also use A∗ algorithms.

Lastly, we would like to derive a bit more efficient algorithm. In the program
above, a quasi-order W ‡ =≤w◦π1

∩ =(dst×id) ∩=c◦π1
is used to discard unnecessary

candidates, which satisfies monotonicity condition guaranteed by Theorem 4.21.
We can use a bit stronger order W> =≤w◦π1

∩=(dst×id) ∩≤c◦π1
, whose monotonicity

condition can be proved by Lemmas 4.7 and Lemma 4.13. Since x ≤cost y implies
costlessC−c(e)(y) ⇒ costlessC−c(e)(x), costlessC−c(e) is monotonic on ≤cost ; besides,
addEdge is monotonic on ≤cost . Hence, the following algorithm is correct, which is
more efficient than the previous one.

(opt ◦ (thinW > ◦ Λ(next ∪
⋃

e∈E

(extendDe ◦ (costlessC−c(e) ◦ π1)?) ◦ ∈))∗) {([ ], 0)}

The algorithm above is almost the same as the one proposed by Desrochers and
Soumis [DS88].

4.3 Summary and Discussions

In this chapter, we have developed calculational laws to derive efficient algorithms
for combinatorial optimization problems. We have proposed calculational laws to
construct and confirm monotonicity conditions. The keys to efficient algorithms are
the use of functions and the incrementality condition. We have demonstrated effec-
tiveness of our calculational laws through derivation of several algorithms including
known efficient algorithms for shortest path problems and their variants.

We have mainly discussed derivations of dynamic programming algorithms. Since
dynamic programming is one of the most important techniques for constructing effi-
cient algorithms, there are many studies for formalizing it [Bel57,Iba73,Mor82,Hel89,
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dM92,BdM96,Cur96,Cur97,KV06] and automatically deriving it [ALS91,BPT92,
SHTO00, LS03, GMS04]. Most of them mention the importance of monotonicity
conditions. If monotonicity condition holds, naive memoization yields a dynamic
programming algorithm. However, most studies treat monotonicity conditions as
an assumption. We concentrated to construct monotonicity conditions.

In Section 4.2, we derived algorithms for shortest path problems and their vari-
ants. Systematic derivation of graph algorithms is known to be difficult, and there
were many studies about this issue, for example [MR93,BvdEvG94,SHT98,Rav99a,
Dur02, MHT07]. One of our purposes is to provide a calculational law that can
derive graph algorithms.

Our work is highly motivated by the works about maximum marking prob-
lems [ALS91,BPT92,SHTO00,Bir01]. We aimed at generalizing them so that they
can cope with more problems, such as problems on graphs. We pointed out that
the incrementality condition is the key to dynamic programming algorithms, and
generalize the results so as to deal with even graph iterating problems.

We have intensively used equivalence relations to derive monotonicity condition
and derived dynamic programming algorithms. Greedy algorithms are usually more
efficient than dynamic programming algorithms, and derivation of greedy algorithms
is an important topic. At a glance, we can derive greedy algorithms if we obtain
monotonicity condition without breaking totality of quasi-orders, and our calcula-
tional laws are also helpful for this purpose. However, since we have concentrated on
monotonicity conditions, it is only better-local algorithms [Cur96,Cur03], in which
better partial solutions yield better ones in each step, that we can derive on our
laws. There are other kinds of greedy algorithms, called best-local algorithms (the
best partial solution yields the best one in each step) and best-global algorithms
(the greedy strategy finally yields the best solution, while partial solutions may not
be the best), which cannot be characterized by monotonicity conditions. Therefore,
it is interesting further direction to formalize effective methods to derive greedy
algorithms.

4.4 Supplemental Lemmas

Lemma 4.24 (Proposition 9.3 of [BdM96]). Given a relator F, a total function
f , a functions g and h, and a relation R, assume that there exists a function h′

such that both of f ◦ h = h′ ◦ F(f △ g) and R ◦ h′ ⊇ h′ ◦ F(R × id) hold. Then,
Rf ◦ h ⊇ h ◦ F(Rf ∩ =g) holds.

Lemma 4.25 (Exercise 7.8 of [BdM96]).

R ∩ S◦ ⊇ minR ◦ min◦
S

Proof.
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minR ◦ min◦
S = { trivial (∩) }

(minR ◦ min◦
S) ∩ (minR ◦ min◦

S)
⊆ { minR ⊆ ∈ }

(minR ◦ ∋) ∩ (minS ◦ ∋)◦

= { definition of min }
((∈ ∩R/∋) ◦ ∋) ∩ ((∈ ∩ S/∋) ◦ ∋)◦

⊆ { trivial (∩) }
(R/∋ ◦ ∋) ∩ (S/∋ ◦ ∋)◦

⊆ { property of / }
R ∩ S◦

Lemma 4.26. For any relations R and S,
R ;S
< is equivalent to

R
< ;S.

Proof.

R ;S
< = { definition of

R ;S
< }

(S ∩ (S◦ ∪R)) ∩ (S◦ ∪ (S ∩R◦))
= { distributivity }

S ∩ (S◦ ∪ (R ∩ S ∩R◦))
= { simplification }

S ∩ (S◦ ∪ (R ∩R◦))

= { definition of
R
< and ⇒ }

S ∩ (S◦ ⇒
R
<)

= { definition of
R
< ;S }

R
< ;S

Lemma 4.27. For a polynomial functor F and relations R and S,
F(R ;S)
< ⊆

FS
< ∪

(FS ∩
FR
<) holds.

Proof.

F(R ;S)
< = { definition }

F(S ∩ (S◦ ⇒ R)) ∩ F(S◦ ∩ (S ⇒ R◦))
⊆ { F is polynomial, and Lemmas 2.7 and 2.9 }

FS ∩ (FS◦ ⇒ FR) ∩ (FS◦ ∪ F(S ⇒ R◦))
⊆ { (S ⇒ R◦) ⊇ R◦ }

FS ∩ (FS◦ ⇒ FR) ∩ (FS◦ ∪ FR◦)
= { simplify }

(FS ∩ FS◦) ∪ (FS ∩ FR ∩ FR◦)
= { definition of the strict part }

FS
< ∪ (FS ∩

FR
<)

Lemma 4.28. Let � be the linear order on which True is strictly smaller than
False. Then, for any quasi-order R and predicate p, the following equation holds.

minR ◦ p△ = p? ◦ minR ;�p
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Proof. Prepare two sets X and Y such that p△(X) = ∅ and p△(Y ) = Y . Then, it
is sufficient to show the following equation.

ΛminR ◦ p△(X ∪ Y ) = Λ(p? ◦ minR ;�p
)(X ∪ Y )

When Y is the empty set, then both sides yield the empty sets. When Y is not
empty, the left hand side yields ΛminR(Y ), and from the definition of R ;�p, the
right hand side also yields ΛminR(Y ).

Lemma 4.29. For any quasi-orders R and S, R ;S ⊇ R ∩ S
= holds.

Proof.

R ;S ⊇ R ∩ S
= ⇔ { definition of R ;S and S

= }
S ∩ (S◦ ⇒ R) ⊇ R ∩ S ∩ S◦

⇐ { S◦ ⇒ R ⊇ R }
S ∩R ⊇ R ∩ S ∩ S◦

⇐ { trivial (∩) }
True

Lemma 4.30. For relations R and S, mnlR ◦ ΛmnlR ;S = mnlR ;S holds if S ∩ S◦ ⊆
R◦ ⇒ R holds.

Proof. It is evident that mnlR ◦ ΛmnlR ;S ⊆ mnlR ;S holds; thus we prove mnlR ◦
ΛmnlR ;S ⊇ mnlR ;S.

mnlR ◦ ΛmnlR ;S ⊇ mnlR ;S
⇔ { Lemma 3.24 }

mnlR ;S ∩ (R◦ ⇒ R)/mnl◦R ;S ⊇ mnlR ;S
⇔ { trivial (∩) }

(R◦ ⇒ R)/mnl◦R ;S ⊇ mnlR ;S
⇔ { property of / }

R◦ ⇒ R ⊇ mnlR ;S ◦ mnl◦R ;S
⇐ { Lemma 4.25 }

R◦ ⇒ R ⊇ ((R ;S)◦ ⇒ (R ;S)) ∩ ((R ;S)◦ ⇒ (R ;S))◦

⇔ { definition of ;and ⇒ }
R◦ ⇒ R ⊇ (S◦ ∪ (S ∩R◦) ∪ (S ∩ (S◦ ∪R))) ∩ (S ∪ (S◦ ∩R) ∪ (S◦ ∩ (S ∪R◦)))

⇔ { simplification }
R◦ ⇒ R ⊇ (S◦ ∩ S) ∪ (S ∩ S◦ ∩ (R◦ ∪R) ∩ (R ∪R◦))

⇔ { property of ∪ }
(R◦ ⇒ R ⊇ S◦ ∩ S) ∧ (R◦ ⇒ R ⊇ S ∩ S◦ ∩ (R◦ ∪R) ∩ (R ∪R◦))

⇔ { premise and trivial (∩) }
True

Lemma 4.31. For well-supported quasi-orders R and S, the following equation
holds if a R b ∨ b R a implies a S b ∨ b S a.

ΛmnlR ◦ ΛmnlS = ΛmnlR ;S
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Proof. From Lemma 4.30, ΛmnlR ◦ΛmnlR ;S = ΛmnlR ;S holds, because the premise

of Lemma 4.30 certainly holds: R◦ ⇒ R ⊇ R◦ ∩ R ⊇ S◦ ∩ S. Therefore, from
Lemma 3.28, it is sufficient to prove that ΛmnlS(X) ⊇ ΛmnlR ;S(X) holds for all
set X. From Lemma 3.25, it is sufficient to prove (S◦ ⇒ S) ⊇ ((R ;S)◦ ⇒ (R ;S)),
which is proved as follows.

(S◦ ⇒ S) ⊇ ((R ;S)◦ ⇒ (R ;S))
⇔ { definition of ;and ⇒ }

S◦ ∪ S ⊇ (S◦ ∪ (S ∩R◦)) ∪ (S ∩ (S◦ ∪R))
⇔ { property of ∪ }

(S◦ ∪ S ⊇ S◦) ∧ (S◦ ∪ S ⊇ S ∩R◦) ∧ (S◦ ∪ S ⊇ S ∩ (S◦ ∪R))
⇔ { trivial (∩ and ∪) }

True





Chapter 5

A Generic Framework for Optimal

Path Querying

Imagine we are planning a trip to a historic city, in which we intend to look round
famous sights. How can we find the best route for strolling the city? Finding
the shortest route would not be very difficult, because well-known algorithms for
shortest path problems will be applicable. However, what we truly want will not be
the shortest route in practice: we might want to find a route whose transportation
expense is less than a certain limit; we might want to take a rest at a certain cafeteria
on afternoon; we might want to walk for a while to enjoy scenery; we might walk
slower than usual after visiting a certain temple on a hill, etc. After all, it is a
complicated problem—how can we find the best route?

The objective of this chapter is to provide a generic framework for optimal path
querying. We intend to find the optimal route that is identified by a given criterion of
optimality. Optimal path queries are important from both theoretical and practical
aspects. In theory, a lot of optimization problems result in routing problems, such
as shortest path problems and their variants. In practice, optimal path queries
have a lot of practical applications. The trip-planning problem described above is a
direct application. To provide a routing with quality-of-service guarantees is another
application [KK01], where optimal path queries are necessary to find a routing that
satisfies additional requirements such as band width and latency. Querying graph-
structured databases is also an application of optimal path queries. While regular
path queries [MW95, FFG06] are known to be useful methods, infinite number of
paths may match a query and it would be necessary to extract the optimal one such
as the smallest one.

Since optimal path queries are important, there are a lot of studies on this
topic from algorithmic viewpoints [Jok66,DS88,Rom88,Pun91,BJM00,BJ04,VD05,
SJH06, CZ07]. However, it is difficult for nonspecialists to utilize such studies for
their objective. Recall the trip-planning problem. Even finding the shortest route
via given sights is a nontrivial problem, and it is an instance of regular-language-

The result of this chapter was published as [MMHT08a].
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constrained shortest path problems [Rom88]. The first additional requirement, the
expense must be less than a limit, is an instance of resource-constrained shortest
path problems [Jok66]. The second one, take a rest at the cafeteria on afternoon, is a
combination of time-window constraints [DS88] and regular-language constraints. It
is not easy to find an existing algorithm that copes with a requirement; furthermore,
we need to deal with combinations of many requirements.

In the previous chapter, we demonstrated derivations of efficient algorithms for
shortest path problems, regular-language-constrained shortest path problems, and
resource-constrained shortest path problems. We demonstrated our calculational
laws bring uniform derivations of algorithms for these problems. In this chapter, we
propose a generic framework for optimal path queries based on the derivation. We
propose a domain-specific language (in short, DSL) to describe optimal path queries,
together with an algorithm to find an optimal path specified in our language.

5.1 Designing a Domain-Specific Language for

Optimal Path Querying

Here, let us discuss the design of our domain-specific language for optimal path
querying. As summarized in the introduction, two important requirements for our
DSL are effectiveness and expressiveness: the DSL should be evaluated efficiently
and can be express many practical optimal path queries.

First, let us consider expressiveness. As outlined as the trip planning problem,
we would like to specify a criterion of optimality not only by requirements for paths
but also by the cost of a path. Such flexibility is also important when we consider
to reduce other problems into optimal path problems. For this reason, we adopt
recursive functions for describing criteria of optimality. We use two kinds of recursive
functions, numeric-valued functions and boolean-valued functions, because we will
express both costs and requirements by recursive functions. We do not adopt other
formal frameworks, such as regular expressions, because they may not be useful to
describe costs of paths, while they will be useful to specify requirements; besides, it
is usually not difficult to translate them into recursive functions.

Next, let us consider effectiveness. As demonstrated in the derivations in the
previous section, the key to efficient algorithms is the way how we specify crucial
case analyses. Our calculational laws, which are useful for specifying proper case
analyses, indicate that a key to appropriate case analyses is incrementality condition.
In this case, since we can enumerate all candidates (paths) by recursively extending
paths, incrementality condition naturally holds if a criterion of optimality is specified
by recursive functions on a path.

In addition to incrementality condition, we should guarantee monotonicity condi-
tion for the primitive case. Recall that our calculational laws construct complicated
monotonic conditions from simple and primitive ones. Thus, the primitive mono-
tonicity condition that constitute the “core” of complicated cases is necessary. In
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prog ::= minimize h(x) subject to p(x) where decl · · · decl { program }

decl ::= p(ǫ) = b; p(x++ [a]) = φ; { boolean-valued function }

| f(ǫ) = n; f(x++ [a]) = e; { integer-valued function }

| h(ǫ) = n; h(x++ [a]) = e′; { objective function }

φ ::= b | ¬φ | φ ∧ φ | φ ∨ φ | p(x) | q(a) | e ≤ n { boolean-valued expression }

e ::= n | e⊕ e | f(x) | h(x) | w(a) | if φ then e else e { integer-valued expression }

e′ ::= n | e′ ⊕ e′ | h(x) | w(a) | if φ then e′ else e′ { body of objective function }

⊕ ::= + | × | ↑ | ↓ { arithmetic operator }

Figure 5.1. Syntax of our query language, where b ∈ Bool and n ∈ Z+ are constant
values, q :E → Bool is an atomic predicate, w :E → Z+ is a weight function, and a
and x are respectively variables of type E and E∗.

this case, we make use of the fact that usual arithmetic operators, namely +, ×, ↑,
and ↓, are monotonic on ≤ in the sense that a ≥ b implies a⊕ e ≥ b⊕ e when a, b,
and e are nonnegative, where ⊕ is the operator.

Furthermore, we need to guarantee another property. Recall that our calcula-
tional laws will introduce relations like R∩=f , which means that candidates having
different f values are not compared. Therefore, if the range of f is infinite, in other
words we will consider infinite number of cases, then the termination of the resulted
algorithm is generally not guaranteed, especially when the number of candidates is
infinite. Actually optimal path querying is the case. There are infinite number of
paths, and thus, guaranteeing finiteness of f is the matter of termination of query-
ing algorithms. While boolean-valued functions naturally have finite range, ranges
of numeric-valued functions are naturally infinite and problematic. We solve this
problem by restricting the syntax of our DSL a bit.

5.2 Language for Optimal Path Querying

We treat G = (V,E) as the underlying graph in the rest of this chapter.

5.2.1 Language Description

Figure 5.1 shows the syntax of our query language. At the top of a program, we
specify the objective function and the requirement for feasible paths. Both objec-
tive functions and requirements are expressed by using recursive functions on a path.
There are two kinds of recursive functions: boolean-valued and nonnegative-integer-
valued functions. Declarations of boolean-valued functions consist of constants,
basic boolean operations, function calls, atomic predicates, and inequalities. Right-
hand-side expressions of inequalities must be constant nonnegative integers, which
is the key restriction to guarantee termination of our querying algorithm. Decla-
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rations of integer-valued functions consist of constants, additions, multiplications,
minimum and maximum operations, function calls, weights of edges, and conditional
expressions. Note that constant values and values of weight functions should be non-
negative, and thus, the range of each integer-valued function is nonnegative. The
objective function is an integer-valued function that must not call other functions
outside operands of inequalities. Atomic predicates and weights are predefined, and
distinguished from recursive functions by types of their arguments.

The semantics is straightforward. Given an objective function h, a requirement
p, and a graph G, the program results in one of the minimum-h-valued paths in G
among those satisfying p.

In the declaration of each recursive function, we assume that the size of recursive
parameters must decrease, such as f(x++[a]) = · · · g(x) · · ·h(x) · · · ; hence all recur-
sive functions trivially terminate. Declarations like f(x++[a]) = · · · g(x++[a]) · · · are
prohibited, and we should unfold g(x++[a]). Meanwhile, we will use such declarations
as a syntactic sugar. Declarations like f(x++[a]++[b]) = · · · g(x) · · · are also prohib-
ited, and we should use an auxiliary function: f(x′++[b]) = · · · f ′(x′) · · · ; · · · ; f ′(x++
[a]) = · · · g(x) · · · . In addition, we impose the following assumption, which is re-
quired to utilize Dijkstra algorithm.

Requirement 5.1. For an objective function h and any path x ++ [a], h(x) ≤
h(x++ [a]) holds.

It is not difficult to confirm Requirement 5.1 in a sound manner. Given the ob-
jective function h, the following function check takes the description of its recursive
case and returns True only if it satisfies Requirement 5.1.

check [[h(x++ [a]) = e′; ]]
def
= chk [[e′]]

chk [[n]]
def
= False

chk [[e′1 + e′2]]
def
= chk [[e′1]] ∨ chk [[e′2]]

chk [[e′1 × e′2]]
def
= chk [[e′1]] ∧ chk [[e′2]]

chk [[e′1 ↑ e
′
2]]

def
= chk [[e′1]] ∨ chk [[e′2]]

chk [[e′1 ↓ e
′
2]]

def
= chk [[e′1]] ∧ chk [[e′2]]

chk [[h(x)]]
def
= True

chk [[w(a)]]
def
= False

chk [[if φ then e′1 else e′2]]
def
= chk [[e′1]] ∧ chk [[e′2]]

Recall that all weights and constant integers are nonnegative; therefore, for the
case of addition, it is sufficient to check that either of operand contains a recursive
call. For the case of multiplication, the possibility of a multiplication with 0 is
problematic, and thus, we check that both operands contain a recursive call. Note
that y ≥ x ∧ z ≥ x implies y × z ≥ x for any x ∈ Z+. The other cases are similar.
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5.2.2 Writing Optimal Path Queries by the Language

Shortest Path Problems with Transit Costs

As an example, let us consider a shortest path problem with transit costs. The
objective of the problem is to find the lowest-cost route from the starting point to
the destination, where we should pay an additional cost to ride on a train. The
following is a description of the problem in our language, where the starting point
is s, the destination is t, and the additional cost is C.

minimize cost(x) subject to constraint(x) where

constraint([ ]) = False;
constraint(x++ [a]) = starts(x++ [a]) ∧ tot(a);
starts([ ]) = False;
starts(x++ [a]) = starts(x) ∨ (empty(x) ∧ froms(a));
empty([ ]) = True;
empty(x++ [a]) = False;
walk([ ]) = True;
walk(x++ [a]) = ¬train(a);
cost([ ]) = 0;
cost(x++ [a]) = cost(x) + w(a) + (if walk(x) ∧ train(a) then C else 0)

In the description, w is a weight function, and the functions froms, tot, and train

are atomic predicates. The definitions of froms and tot are froms(e)
def
= (hd(e) = s)

and tot(e)
def
= (tl(e) = t), respectively. The predicate train checks whether we are

riding on a train.

The requirement for solutions is checked by the predicate constraint . It is worth
noting that use of our language is not restricted to point-to-point optimal path
problems and it is necessary to examine two endpoints of paths explicitly. Actually
constraint does so. The starting point is examined by the recursive function starts,
which checks whether a path starts from s by using an auxiliary function empty ,
and the endpoint is checked by the atomic predicate tot.

The objective function for this problem is cost , which is the characteristic part of
this problem. The function cost uses a recursive function walk to check the necessity
of transit costs. The function walk checks whether we have not been riding on a
train.

Length-Constrained Shortest Path Problems

Next, let us consider a length-constrained shortest path problem, in which the ob-
jective is to find the shortest path that consists of fewer edges than a given limit.
The following is a description of a length-constrained shortest path problem, where
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the starting point is s, the destination is t, and the limit is K.

minimize wsum(x) subject to constraint(x) where

constraint([ ]) = False;
constraint(x++ [a]) = starts(x++ [a]) ∧ tot(a) ∧ (len(x++ [a]) ≤ K);
starts([ ]) = False;
starts(x++ [a]) = starts(x) ∨ (empty(x) ∧ froms(a));
empty([ ]) = True;
empty(x++ [a]) = False;
wsum([ ]) = 0;
wsum(x++ [a]) = wsum(x) + w(a);
len([ ]) = 0;
len(x++ [a]) = len(x) + 1;

The recursive functions starts and empty are the same as the previous example.
The integer-valued function len computes the number of edges used. The objective
function wsum computes the summation of weights of edges.

Expressiveness of the Language

While our language is simple, it can express a large number of known problems.
Here we enumerate some of them. It is worth noting that their combinations can
be expressed in our language. We assume only nonnegative integers are used in
descriptions. For a large number of problems, negative weights of edges can be
removed in safe by re-weighting method by Johnson [Joh77].

Fact 5.2. The following problems can be expressed in our language: point-to-point
shortest path problems; resource-constrained shortest path problems [Jok66] (find
the minimum-cost path whose weight is less than a given limit); shortest path
problems with time windows [DS88] (find the shortest path where each vertex can
be used only during its time window); regular-language-constrained shortest path
problems [Rom88] (find the shortest path whose label is in a given regular lan-
guage); time-table queries [BJ04] (regular-language-constrained shortest path prob-
lems where weights of edges depend on time); shortest path problems with forbid-
den paths [VD05] (find the shortest path that does not contain given forbidden
paths); approach-dependent, time-dependent, label-constrained shortest path prob-
lems [SJH06] (time-table queries where weights of edges depend on their preceding
vertexes).

Since recursive functions are available, it is not difficult to describe these prob-
lems in our language. For example, regular-language-constrained shortest path prob-
lems can be expressed in our language based on the binary encoding technique: ar-
range a set of boolean-valued functions to simulate the transition function of the
DFA representing the given regular language.
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Figure 5.2. Reducing the shortest path problem with transit costs into a usual
shortest path problem. Double-lines arrows stand for edges of riding on a train,
broken arrows stand for edges of walking, and C is the additional cost for a transit.

While our language is expressive, there are several problems that cannot be dealt
with. For example, we cannot describe maximization problems such as maximum
capacity path problems [Pun91]. Context-free-language-constrained shortest path
problems [BJM00] (find the shortest path whose label is in a given context-free
language) are also out of its domain, because recursive functions must traverse over
a path in the fixed direction in our language.

5.3 Deriving Optimal Path Querying Algorithm

In this section, we introduce our optimal path querying algorithm with some im-
provements. Before introducing our algorithm, we would like to outline our deriva-
tion from an algorithmic viewpoint rather than the calculational viewpoint for pro-
viding intuitive understanding.

Our derivation can be seen as reduction of optimal path problems into minimum-
weighted path problems. As an example, consider the shortest path problem with
transit costs, which we have seen in Section 5.2. Notice that for determining opti-
mality, it is necessary to distinguish whether we are riding on a train or not, because
it affects the cost of paths. That distinction naturally raises a case analysis, and
based on this case analysis, we can reduce the problem into a shortest path problem,
as shown in Figure 5.2. To distinguish these two cases, we divide the vertex v into
two: one corresponds to the case of riding on a train, and the other corresponds to
the case of not riding on a train. Then, the shortest path on the right graph is the
optimal path on the left one.

Although this approach is applicable for a large set of problems, there are two
issues. The first issue is correctness. How can we provide an appropriate reduction,
or, equivalently, how can we specify appropriate case analyses? Here, our calcu-
lational laws are helpful. As discussed, incrementality condition implies successful
case analyses, and our DSL is designed so that incrementality condition is fulfilled.
The second issue is efficiency. In general, the reduction makes the underlying graph
much larger and derives practically inefficient algorithms. We solve the second issue
by “on-the-fly” evaluation, that is, we do not really construct the larger graph.

In the following, we regard each expression in the description as a function that
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takes a path and returns a value. In addition, we will use the following nota-
tions. For integer-valued functions f and g in a query description, f ; g de-
notes that the definition of g syntactically contains function calls of f in its non-
predicate part. For example, f ; g holds when g is defined by g(x ++ [a]) =
if · · · then · · · f(x) · · · else · · · , while f ; g may not hold when g is defined by
g(x++ [a]) = if (f(x) ≤ n) then · · · else · · · . The transitive closure of ; is denoted

by
+
;. Intuitively f

+
; g means a result of g would contain a result of f . We use the

same notation for integer-valued expressions by regarding them as integer-valued
functions.

5.3.1 Deriving Case-Analysing Function

Now, let us derive our optimal path querying algorithm. The key to efficient querying
algorithm is to specify a function that represents successful case analyses. In other
words, given the objective function h and the constraint p, we would like to find
a function g such that (i) ≤h ∩ =g satisfies monotone condition, and (ii) g(x) =
g(y) implies p(x) = p(y). Note that incrementality condition of g is important to
guarantee the first requirement.

Let {p0, p1, . . . , pm} and {f0, f1, . . . , fn} be respectively the whole set of boolean-
valued functions and integer-valued functions (including the objective function) in
the query description. Consider a function g defined as follows.

g(x)
def
= (f0(x), f1(x), . . . , fn(x), p0(x), p1(x), . . . , pm(x))

The function g is a candidate of the function to describe case analyses because
of the following two reason: first, g satisfies incrementality condition because g is
a recursive function (or, more specifically, a catamorphism) on a path; second, g
retains sufficient information to determine the optimality of a path in the sense that
the two requirement above are fulfilled. However, the range of g may be infinite. As
mentioned, finiteness of cases is necessary to guarantee the termination of derived
algorithm.

To resolve this problem, we set a cut-off to each integer-valued function. For
each integer-valued function f , we define its cut-off version f̂ :E∗ → (Z+ ∪ {∞}) as
follows, where a set I stands for all inequalities in the description and we interpret
max(∅) as −∞.

f̂(x)
def
=

{
f(x) if f(x) ≤ max{n | (e ≤ n) ∈ I ∧ f

+
; e}

∞ otherwise

The value of f̂ is the same as that of f up to the boundary and turns into ∞ when it
exceeds the boundary. The boundary for f̂ is the maximum right-hand-side value of
the inequality whose left-hand-side value would include some f̂ value. Although the
function f̂ forgets some information of f , it is not a problem: when values that are
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larger than boundaries are used, integer-valued expressions result in larger values
and inequalities yield False; therefore, their exact values are unnecessary.

By using the cut-off values, we can obtain a proper case-analyzing function state
as follows.

state(x)
def
= (f̂0(x), f̂1(x), . . . , f̂n(x), p0(x), p1(x), . . . , pm(x))

As required, the range of the function state is finite. The appropriateness of state
is verified by the following lemmas.

Lemma 5.3. For each boolean-valued expression φ in the description, φ(x++[a]) =
φ(y ++ [a]) holds if state(x) = state(y) holds.

Proof. Inequalities are the only nontrivial construction. We will prove it by contra-
diction.

Assume that e(x ++ [a]) ≤ n < e(y ++ [a]) holds for an inequality “e ≤ n”.
Then, there exists an integer-valued function g ; e such that g(x) < g(y) holds.
Since state(x) = state(y) holds, g(x) < g(y) implies ĝ(x) = ĝ(y) = ∞. From the
definition of ĝ and the fact g ; e, ĝ(x) = ∞ implies g(x) > n, which contradicts
e(x++ [a]) ≤ n.

Lemma 5.4. If state(x) = state(y) holds for two sequences x and y, then state(x++
[a]) = state(y ++ [a]) holds for any edge a.

Proof. From Lemma 5.3, p(x++[a]) = p(y++[a]) holds for all boolean-valued functions
p in a description; thus, it is sufficient to show f̂(x++ [a]) = f̂(y ++ [a]) holds for all
integer-valued functions f in a description. We will prove it by contradiction.

Assume that f̂(x++[a]) < f̂(y++[a]) holds. From Lemma 5.3, the same branches
are chosen at all conditional expressions in the computations of f̂(x ++ [a]) and
f̂(y ++ [a]). Therefore, there exists an integer-valued function g ; f such that
g(x) < g(y) and g is certainly called when f̂(x++ [a]) and f̂(y ++ [a]) are evaluated.
Since state(x) = state(y) holds, g(x) < g(y) implies ĝ(x) = ĝ(y) = ∞. Now let u be

the boundary used in f̂ ; then, ĝ(x) = ∞ implies g(x) > u, because f
+
; e implies

g
+
; e for any expression e. However, g(x) ≤ f(x ++ [a]) holds from construction

of f , which implies u < f(x ++ [a]). In summary, f̂(x ++ [a]) = ∞ holds and it
contradicts f̂(x++ [a]) < f̂(y ++ [a]).

Lemma 5.5. For an edge a and two paths x and y such that state(x) = state(y)
and dst(x) = dst(y) hold, x++ [a] is feasible if and only if y ++ [a] is feasible.

Proof. Since dst(x) = dst(y) holds, x++ [a] is a path if and only if y++ [a] is a path.
Moreover, state(x) = state(y) holds; hence, from Lemma 5.3, x ++ [a] is feasible if
and only if y ++ [a] is feasible.

Lemma 5.6. For the objective function h and two sequences x and y, assume that
both state(x) = state(y) and h(x) ≤ h(y) hold. Then, for any edge a, h(x++ [a]) ≤
h(y ++ [a]) holds.
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Proof. The value of h(x++[a]) is determined from the value of recursive function calls
and values determined from a. Recall that the body of h includes no function calls
except for that of h. Moreover, from Lemma 5.3, the same branches are chosen to
evaluate h(x++ [a]) and h(y++ [a]). Now the difference of h(x++ [a]) and h(y++ [a])
comes from only the value of h(x) and h(y). Since h(x) ≤ h(y) holds from an
assumption, we can conclude h(x++ [a]) ≤ h(y ++ [a]) from construction of h.

Lemmas 5.4, 5.5, and 5.6 tell us that it is sufficient to retain the minimum-
weighted path among those having the same state-value. Given the objective func-
tion h, for any paths x and y such that all of state(x) = state(y), dst(x) = dst(y),
and h(x) ≤ h(y) hold, y ++ z is a feasible path only if x ++ z is feasible; moreover,
h(x++z) ≤ h(y++z) holds. From the viewpoint of our calculational laws, Lemma 5.4
corresponds to the incrementality condition, Lemma 5.5 means that the constraint
function is more collapsing than state with dst , and 5.6 provides the proof of mono-
tonicity condition. The key point is to reduce the number of cases to finite without
breaking incrementality condition.

5.3.2 Optimal Path Querying Algorithm

To simplify our optimal path querying algorithm, we prepare an auxiliary function
pstate defined as follows.

pstate(x)
def
= (state(x), dst(x))

Notice that pstate(x) = pstate(y) is equivalent to state(x) = state(y) ∧ dst(x) =
dst(y). Therefore, pstate can determine whether two paths should be compared in
the algorithm. We will provide a more discussion about what pstate stand for in
the next subsection.

Our optimal path querying algorithm is the following, where h is the objective
function.

Procedure 5.7 (Optimal path querying algorithm).
Input: a graph.
Output: an optimal path if it exists.

(1) Let W be {[ ]} and N be ∅.
(2) Exit if W = ∅. // There exists no feasible path.
(3) Extract the minimum-h-valued path x from W .
(4) If x is feasible, return x. // x is an optimal path.
(5) Add pstate(x) to N .
(6) For each path z ∈ {x++ [a] | a ∈ E},

(6-a) If pstate(z) ∈ N , do nothing.
(6-b) If ∀y ∈W : pstate(z) 6= pstate(y), add z to W .
(6-c) If ∃y ∈ W : pstate(z) = pstate(y) ∧ h(z) < h(y), replace y by z.

(7) Go to (2).
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Theorem 5.8. Procedure 5.7 is correct; in other words, Procedure 5.7 always ter-
minates and returns an optimal path if it exists.

Proof. Notice that W never contains two paths whose pstate values are the same.
Moreover, W never contains a path whose pstate value is in N . Therefore, the size
of N increases strictly. Since N is always a subset of the range of pstate, which is
finite, the algorithm terminates.

From Lemmas 5.4, 5.5, and 5.6, it is sufficient to consider extensions of the
minimum-h-valued path for each equivalent class raised from the value of pstate.
Actually, W surely retains the minimum-h-valued path found for each equivalent
class. Moreover, from Requirement 5.1, paths are examined in increasing order of
their h-values in the step (4); thus, paths discarded in the step (6-a) are unnecessary
for finding the optimal path, because another path of the same pstate-value and less
(or equal) h-value was considered before. Besides, the feasible path found firstly
is the optimal path because of the same reason. In summary, the algorithm is
correct.

The problem is reduced into a minimum-weighted path problem on a larger
graph, whose vertexes corresponds to the range of pstate. The path x on the origi-
nal graph is recognized as a path from the vertex pstate([ ]) to the vertex pstate(x) on
the larger graph, and Procedure 5.7 finds the minimum-weighed path from pstate([ ])
to the vertex v such that pstate(x) = v implies feasibility of x. Moreover, Proce-
dure 5.7 scans the larger graph in a “on-the-fly” manner, that is, it does not explicitly
construct the larger graph. The procedure uses the function pstate as a compressed
representation of the larger graph, identify a vertex only if the procedure runs across
it, and terminates when an optimal path is found. Therefore, most of the inefficiency
raised from generating the larger graph is eliminated.

Data Structures for Efficient Implementation

While an ideal hash set provides an efficient implementation of N , the priority
queue W requires a bit complicated data structure. The data structure should
support efficient implementation of inserting an element, extracting the minimum-
weighted element, decreasing the weight of an element, and finding an element of
the specified pstate-value. We prepare a Fibonacci heap with an ideal hash map
for W . The Fibonacci heap stores paths according to their weights. The hash map
associates each pstate-value to the element having the value in the Fibonacci heap.
Notice that we should rearrange pointers in the hash set after the Fibonacci heap is
manipulated. Therefore, we prepare back pointers from elements in the Fibonacci
heap to the entries of the hash map, and keep their consistency.

After all, operations for W except extract-minimum can be done in (amortized)
constant time. Extracting the minimum-weighted element from W takes O(log n)
time, where n is the size of W .
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Computational Complexity

Let k be the size of the range of state; then the size of the range of pstate is at most
k|V |. We assume that all results of recursive functions are memoized.

In Procedure 5.7, the steps (2) to (7) are executed at most k|V | times. Each
execution of the steps (2) to (5) costs O(log(k|V |)) time. Each execution of the step
(6) costs amortized O(1) time for a path. The number of such paths is at most
k|E|, because each edge is used at most k times. In summary, the time complexity
of Procedure 5.7 is O(k|V | log(k|V |) + k|E|).

It is worth noting that the value k depends only on the description of the query;
hence, the time complexity of Procedure 5.7 is polynomial in the size of the graph.
However, the value k would be exponential to the size of the description. For
example, a traveling salesman problem requires a description of at least O(|V |) size,
and then the value k becomes O(2|V |); thus, it is an exponential time algorithm, yet
it is much more efficient than the trivial algorithm that takes O(|V |!) time.

5.3.3 Relationship to Product Construction

Well, let us change our viewpoint. From other point of view, our construction of
the larger graph can be rephrased as product construction of finite automata. This
view is useful for discussing further improvement of our algorithm.

First of all, the function state can be recognized as a representative function of a
DFA that takes a sequence of edges and checks the feasibility of the sequence. Let S
be the range of state, and define the transition function δ and the set of final states
SF by δ(state(x), a) = state(x ++ [a]) and SF = {state(x) | x ∈ E∗ ∧ p(x)}, where
p is the requirement for feasibility. Then, the DFA S = (S,E, δ, {state([ ])}, SF )
accepts all sequences of edges each of which is feasible if it is a path.

Figure 5.3 shows the DFA corresponds to the function state for the shortest path
problem with transit cost, where, for simplicity, we regard the recursive function walk
as state. In the DFA, the initial state is s0, which corresponds to the case where
walk -value is True, that is, we are not on a train. When we ride on a train, the
state becomes s1, which corresponds to the case where walk -value is False. It turns
into s0 when we get off a train. Both s0 and s1 are final states, because walk -values
do not affect to feasibility.

Next, let us interpret a graph as an NFA that accept a sequence of edges if and
only if it is a path on the graph. Let the transition relation τ be τ = {(v′, (v, e)) |
v, v′ ∈ V ∧ e ∈ E ∧ hd(e) = v ∧ tl(e) = v′}. Then, G = (V,E, τ, V, V ) forms an NFA
that accepts all paths on the graph.

Finally, consider the product of S and G, say G ′ = (S × V,E, τ ′, {(state([ ]), v) |
v ∈ V }, SF ×V ). Then, the automaton G ′ accepts a sequence of edges if and only if
it is a feasible path. Moreover, each transition has a unique cost because the branch
used to compute the cost can be determined by the preceding state. Therefore, the
optimal path querying problem is reduced into the minimum-weighed word problem
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Figure 5.3. A DFA representing the structure of case analyses of the shortest path
problem with transit costs. The state s1 corresponds to the situation of riding on
a train, and s0 corresponds to the others. Double-lines arrows are transitions when
the DFA takes an edge of riding on a train, and broken arrows are transitions when
it takes an edge of not riding on a train. s0 is the initial state, and both s0 and s1

are final states.

on G ′. It is worth noting that the function pstate used in Procedure 5.7 is the
representative function of G ′. Therefore, Procedure 5.7 exactly finds the minimum-
weighed word on G ′.

As an example, consider the product of the DFA in Figure 5.3 and the DFA
corresponding to the underlying graph (e.g., the left of Figure 5.2). The product
corresponding to the graph that outlines a reduction into a shortest path problem
(e.g., the right of Figure 5.2). The weight of each edge is given by the objective
function cost .

The key to the correspondence between our derivation and product construction
is the finiteness of the range of state. Since the range of state is finite, state can
be rephrased as a DFA and our derivation is equivalent to product construction.
An important fact is that since we have rephrased our derivation in terms of finite
automata, we can utilize known rich results about finite automata to analyze and
improve our optimal path querying algorithm.

5.3.4 Improving Efficiency of the Optimal Path Querying

Algorithm

We have shown an algorithm to find the optimal path. While the algorithm is
correct, there is room for improvement. For example, when we want to find the
shortest path from a vertex s, paths that do not start from s are useless. However,
naive execution of Procedure 5.7 results in enumeration of such useless paths. Here,
we propose improvements to remove such inefficiency.

Our improvements is based on analyses of the DFA corresponding to the function
state. It is worth noting that direct minimization of the DFA is incorrect. For two
paths x and y, assume that x++z is feasible if and only if y++z is feasible. Then, we
may attempt to merge state(x) with state(y). However, h(x) ≤ h(y) may not imply
h(x++z) ≤ h(y++z), where h is the objective function, because different conditional
branches may be used to compute h(x ++ z) and h(y ++ z); thus, merging state(x)
with state(y) will break the property in Lemma 5.6. In other words, we should be
careful about the branches in the objective function.
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To simplify the discussion, we assume the objective function h is described in
the following form, in which each of e′i and φi contains no conditional expressions.

h([ ]) = n;
h(x++ [a]) = if φ1 then e′1

else if φ2 then e′2
...

else if φm−1 then e′m−1

else em

It is easy to rewrite the description of the objective function into this form. For

notational convenience, we define φ′
k

def
= φk ∧

∧k−1
i=1 ¬φi for 1 ≤ k ≤ m − 1 and

φ′
m

def
=

∧m−1
i=1 ¬φi. The predicate φ′

k stands for the condition when the k-th branch
is chosen.

Let S = (S,E, δ, {state([ ])}, SF ) be the DFA defined in the previous subsection.
Label each transition by an integer i ∈ {1, . . . ,m}, which stands for the branch used
to compute the objective function. Then, S ′ = (S,E×{1, . . . ,m}, δ′, {state([ ])}, SF )
also forms a DFA, where the transition function δ′ is defined as follows.

δ′(state(x), (a, i))
def
= state(x++ [a]) if φ′

i(x++ [a])

Now let us introduce our improvements.

Lemma 5.9. If LS′[{state(x)}] = ∅ holds for a sequence x, x ++ y is not feasible for
any sequence y.

Proof. It is evident because y ∈ LS′[{state(x)}] is equivalent to that x ++ y is feasible
if we ignore the labels.

Lemma 5.10. For the objective function h and two sequences x and y, assume all
of LS′[{state(x)}] = LS′[{state(y)}], dst(x) = dst(y), and h(x) ≤ h(y) hold; then, for any
sequences z, x++ z is feasible if y ++ z is feasible, and h(x++ z) ≤ h(y ++ z) holds.

Proof. We will introduce a stronger lemma (Lemma 5.11) next.

Lemmas 5.9 and 5.10 enable us to find unnecessary paths. These lemmas re-
spectively show how to find paths whose extensions yield no feasible path and
those whose extensions yield no better path than others. Lemma 5.9 states that
if LS′[{state(x)}] = ∅ holds for a path x, then we can immediately discard the path.
Lemma 5.10 states that we can compare paths x and y and discard the worse one
if LS′[{state(x)}] = LS′[{state(y)}] holds. We can compute such information about states
beforehand by implementing checks on emptiness and inclusion of regular languages;
then, we can reduce the number of paths considered for finding the optimal path.

From the viewpoint of algorithm development, we could introduce a stronger
lemma than Lemma 5.10.
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Lemma 5.11. For the objective function h and two sequences x and y, assume all
of LS′[state(x)] ⊇ LS′[state(y)], dst(x) = dst(y), and h(x) ≤ h(y) hold; then, for any
sequences z, x++ z is feasible if y ++ z is feasible, and h(x++ z) ≤ h(y ++ z) holds.

Proof. It is evident that LS′[{state(x)}] ⊇ LS′[{state(y)}] means that feasibility of y ++ z
implies feasibility of x++ z, as similar to the case of Lemma 5.9.

Consider z′ ∈ LS′[{state(x)}], and let z be an sequence obtained by removing labels
from z′. Since z′ ∈ LS′[{state(x)}] holds, the branches used for computing h(x ++ z)
from h(x) is the same as that for h(y++z) from h(y). Therefore, h(x++z) ≤ h(y++z)
holds from the construction of h, as similar to the proof of Lemma 5.6.

However, naive implementation of Lemma 5.11 is inefficient, because it is not easy
to find better (or worse) paths from the priority queue W in Procedure 5.7; hence,
Lemma 5.10 would not be appropriate for automatic implementation. Lemma 5.11
is useful for more restrictive settings where it is easy to point out better/worse paths
than the given path.

5.3.5 Correspondence to Existing Algorithms

Dijkstra-like algorithms have been proposed for several classes of optimal path prob-
lems, and some of them are equivalent to Procedure 5.7 with the improvements, when
the specification of the problem can be written in our language. In other words, our
algorithm is a generalization of existing algorithms.

Fact 5.12. Procedure 5.7 with the improvements by Lemmas 5.9 and 5.11 is equiv-
alent to the following algorithms except for implementation of the priority queue:
Dijkstra algorithm for point-to-point shortest path problems; the generalized per-
manent labeling algorithm by Desrochers and Soumis [DS88] for shortest path prob-
lems with time windows; the heap-Dijkstra algorithm by Sherali et al. [SJH06] for
approach-dependent, time-dependent, label-constrained shortest path problems.

In the algorithms above, like ours, problems are reduced into shortest path prob-
lems and solved by implicit application of Dijkstra algorithm. Our construction of
pstate certainly corresponds to their reductions, and overheads are removed by our
improvements.

5.3.6 How the Querying Algorithm Works for Examples

Shortest Path Problem with Transit Costs

From the description of the shortest path problem with transit costs, the function
state is derived as follows.

state(x)
def
= (ĉost(x), constraint(x), starts(x), empty(x),walk(x))

ĉost(x)
def
= ∞
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The values of ĉost , p, empty are not essential: ĉost always returns ∞ because of
absence of inequalities; constraint always yields False until an optimal path is found;
empty yields False for any non-empty paths. In summary, the auxiliary function
state distinguishes paths by values of starts and walk .

Lemma 5.9 tells us that a path x is unnecessary if neither empty(x) nor starts(x)
holds, which corresponds to the case where x does not start from the vertex s. Thus,
after the improvement, the algorithm enumerates paths starting from s, and paths
are distinguished based on the current vertex and whether we are riding on a train.
The number of paths considered in the step (6) of Procedure 5.7 is at most 4|V |+2,
which becomes 2|V | + 2 after the improvement.

Length-Constrained Shortest Path Problem

The state for a length-constrained shortest path problem is obtained as follows.

state(x)
def
= (ŵsum(x), l̂en(x), constraint(x), starts(x), empty(x))

ŵsum(x)
def
= ∞

l̂en(x)
def
=

{
len(x) if len(x) ≤ K
∞ otherwise

As the same as the previous example, values of ŵsum, constraint , and empty are
not important. Paths are distinguished by the values of starts and l̂en: whether the
path starts from s and how much edges are used (or, whether more than K edges
are used).

Lemma 5.9 tells us that a path x is unnecessary if neither empty(x) nor starts(x)

holds or l̂en(x) is ∞. The former is the case where x does not start from s, and the
latter is the case that x consists of more than K edges. Lemma 5.11 tells us that a
path x is unnecessary if there exists a path y such that all of the following four hold:
the destinations of x and y are the same; all values of constraint , starts, empty are
the same for x and y; l̂en(x) ≥ l̂en(y); wsum(x) ≥ wsum(y). This is the case that
the wsum-value of x is worse than that of y while x uses more edges than y.

The number of paths considered in the step (6) of Procedure 5.7 is at most
2(K + 2)|V | + 2, which becomes (K + 1)|V | + 2 after the improvements.

5.4 Optimal Path Querying System

In this section, we report our implementation of optimal path querying system and
experimental results. The system is available from the author’s website1.

1http://www.ipl.t.u-tokyo.ac.jp/~morihata/OPQ.tar.gz
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Figure 5.4. Overview of the optimal path querying system

5.4.1 Implementation of Optimal Path Querying System

Figure 5.4 shows the overview of the system. Querying on the system consists of
two stages. The first stage is code generation, where the system analyses the query
description and generates codes that consist of information for efficient querying.
The second is graph searching, where the system performs Procedure 5.7 using the
generated codes.

This two-staged implementation enhances modularity. These two stages are
essentially independent, because the first stage only cares about descriptions of
queries while the second one concentrates on searching on graphs. Moreover, since
Procedure 5.7 is essentially Dijkstra algorithm, though a bit generalized, it would
be possible to substitute another library for the second stage. Besides, separating
these two would be practical to use our system as a component of a system.

Code Generator

The code generator is made of three hundred lines of Haskell codes excluding codes
for its parser. It generates C++ codes, which mainly includes the following four:
the definitions of recursive functions, the definition of the auxiliary function pstate,
the requirement for feasible paths, and the improvements.

We only implemented the improvement of Lemma 5.9. To make the computation
of this part faster, we binarize each integer-valued function by whether the value
exceeds the boundary.

Graph Searching Procedure

Procedure 5.7 is implemented in C++. As mentioned, this part could be replaced
by another library. The program is made of three hundred lines of codes.

In the implementation, we use a heap instead of a Fibonacci heap for implement-
ing the priority queue, because Fibonacci heaps are inefficient in practice. Hence,



92 5. A Generic Framework for Optimal Path Querying

minimize wsum(x)
s.t. len(x) <= 20 && start0(x) && to1(x)
where
wsum([]) = 0;
wsum(x++[e]) = w(e) + wsum(x);
len([]) = 0;
len(x++[e]) = 1 + len(x);
empty([]) = true;
empty(x++[e]) = false;
start0([]) = false;
start0(x++[e]) = st0(x) || (empty(x) && from(e,0));
to1([]) = false;
to1(x++[e]) = to(e,1);

Figure 5.5. A query description of a length-constrained shortest path problem.

the time complexity of our implementation is O(k|E| log(k|V |)), where k is the size
of the range of state.

5.4.2 Sample Codes

Figures 5.5 and 5.6 respectively show the query description and the generated C++
codes for a length-constrained shortest path problem. In the query description in
Figure 5.5, both from(e,0) and to(e,1) are atomic predicates, where 0 and 1 are
identifiers of vertexes. Therefore, it is a query to find the minimum-weighted path
from the vertex 0 to the vertex 1 among those consist of less than or equal to 20
edges. In the codes in Figure 5.6, a constructor val(val v,edge e) performs the
computations and memoizations of recursive functions. The definition of pstate is
encoded as a function object val_eq_t and a hash function val_hash_t. The former
is used in the heap, and the latter is used in hash sets. The function constraint is
the function to check feasibility. The function unnecessary is the function to find
unnecessary paths, which is obtained from the improvement of Lemma 5.9.

5.4.3 Experiments

To evaluate effectiveness of our implementation, we did some experiments. The
environment of our experiments is the following: dual Intel Quad-Core Xeon 3.0
GHz CPUs; 8 GB memory; Mac OS X; g++ 4.2.2 and ghc 6.6.1. Only one core was
used while the machine had eight cores.

We tested the following four queries: SP (find the point-to-point shortest path),
3-SP (find the point-to-point shortest path that passes a specified vertex), TRANS
(find the shortest path with transit costs), and TLEN (find the shortest path that
uses less or equal to twenty edges of riding on a train). For each specification, the
code generation step finished immediately (less than 0.1 second). In addition to
them, we prepare an implementation of the point-to-point shortest path querying
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struct val {
int wsum;
int len;
bool empty;
bool st0;
bool to1;
node n;
val() {

n = -1;
wsum = 0;
len = 0;
empty = true;
st0 = false;
to1 = false;

}
val(val v,edge e) {

wsum = (e.w+v.wsum);
len = (1+v.len);
empty = false;
st0 = (v.st0 || (v.empty && e.in==0));
to1 = e.out==1;
n = e.out;

}
int weight() const { return wsum; }
static val ninf() {

val v;
v.wsum = INT_MIN;
return v;

}
};
struct val_hash_t {
unsigned long operator()(const val &v) const {

unsigned long long k = v.n;
k = (k * PRIME_FOR_HASH + v.empty) % PRIME_FOR_HASH_;
k = (k * PRIME_FOR_HASH + v.st0) % PRIME_FOR_HASH_;
k = (k * PRIME_FOR_HASH + v.to1) % PRIME_FOR_HASH_;
k = (k * PRIME_FOR_HASH + ((v.len<=20)?v.len:21)) % PRIME_FOR_HASH_;
return (unsigned long)k;

}
} val_hash;
struct val_eq_t {
bool operator()(const val &v, const val &w) const {

return (v.n == w.n &&
v.empty == w.empty &&
v.st0 == w.st0 &&
v.to1 == w.to1 &&
((v.len<=20)?v.len:21) == ((w.len<=20)?w.len:21));

}
} val_eq;
inline bool constraint( val v ) {
return ((v.len<=20) && (v.st0 && v.to1));

}
inline bool unnecessary( val a ) {
return ((a.empty && a.st0 && a.to1 && (a.len>20)) ||

(a.empty && a.st0 && (!a.to1) && (a.len>20)) ||
(a.empty && (!a.st0) && a.to1 && (a.len>20)) ||
(a.empty && (!a.st0) && (!a.to1) && (a.len>20)) ||
((!a.empty) && a.st0 && a.to1 && (a.len>20)) ||
((!a.empty) && a.st0 && (!a.to1) && (a.len>20)) ||
((!a.empty) && (!a.st0) && a.to1 && (a.len<=20)) ||
((!a.empty) && (!a.st0) && a.to1 && (a.len>20)) ||
((!a.empty) && (!a.st0) && (!a.to1) && (a.len<=20)) ||
((!a.empty) && (!a.st0) && (!a.to1) && (a.len>20)));

}

Figure 5.6. The C++ codes generated from the query in Figure 5.5.
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Table 5.1. Size of graphs
RND1 RND2 RND3 RND4 NY FLA CAL EUSA

V 131, 072 131, 072 1, 048, 576 1, 048, 576 264, 346 1, 070, 376 1, 890, 815 3, 598, 623
E 524, 288 2, 097, 152 2, 097, 152 4, 194, 304 733, 846 2, 712, 798 4, 657, 742 8, 778, 114

Table 5.2. Experimental results (unit: second): the bracketed numbers show the
number of essential states of the DFA corresponding to state.
Query RND1 RND2 RND3 RND4 NY FLA CAL EUSA
SP-boost 0.11 0.24 1.04 1.55 0.10 0.48 1.06 2.60
SP (1) 0.31 0.77 1.68 3.14 0.29 1.29 2.67 6.52
3-SP (2) 0.84 2.24 3.95 9.11 0.88 4.12 8.90 21.82
TRANS (2) 0.38 1.02 2.02 3.94 0.40 1.79 3.80 9.60
TLEN (42) 1.52 3.36 28.42 20.08 8.10 10.06 14.99 25.02

for comparison. The implementation is based on Dijkstra algorithm in C++ Boost
Graph Library [SLL01], and denoted by “SP-boost”.

We used eight graphs. We generated four graphs, where the startpoint, endpoint,
and weight of each edge were given randomly. These four are denoted by RND1

(relatively small), RND2 (dense), RND3 (sparse), and RND4 (relatively large). We
borrowed four graphs from the benchmarks of the 9th DIMACS implementation
challenge2. They were travel time data of NY (New York City), FLA (Florida),
CAL (California and Nevada), and EUSA (Eastern USA). The sizes of graphs are
shown in Table 5.1. In these graphs, edges had no category information (such as
“train”), and we added the information irresponsibly. We regarded each vertex
whose identifier is odd as a station and each edge from a station to a station as an
edge of riding on a train. For each graph, we uniformly generated 1000 pairs of a
starting point and a destination (and another vertex for 3-SP), and measured the
average computational times.

The results are shown in Table 5.2. The bracketed numbers in the first column
are the numbers of states of the DFA corresponding to state after applying the
improvement of Lemma 5.9, and show the theoretical ratios of computation times.
To see precise ratios, we count the number of “essential” states, that is, we neglect
states that represent the empty path or the optimal path. The other columns show
computational times excluding times for inputting the graph and outputting the
results.

On one hand, even for the road network of eastern USA, our system returned
results of queries in a minute, which is only several times slower than the point-to-
point shortest path querying by an existing library. This fact would demonstrate
promise of our framework. On the other hand, SP runs two or three times slower than

29th DIMACS Implementation Challenge - Shortest Paths. 2006.
http://www.dis.uniroma1.it/~challenge9/.
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SP-boost. The difference is the overhead of generality. Especially, Procedure 5.7
requires a data structure that is a bit more complicated than an ordinary heap, as
discussed in Section 5.3.2, and it affects efficiency. It is worth noting that the ratio
does not go worse even when the graph gets larger.

The results indicate that more detailed experiments would be necessary for
application-specific uses of our framework. First, observe that practical compu-
tational times are not exactly propositional in the theoretical complexities shown
by the numbers of states. TRANS is much faster than 3-SP, and ratios of com-
putational times between TLEN and others are relatively small in comparison with
ratios of numbers of states. Moreover, computational times depend on combinations
of queries and graphs. For example, the theoretical inefficiency of TLEN comes to
the surface when there are few shortcutting routes because of the necessity to con-
sider paths of many edges.

Someone may notice that a 3-SP problem can be solved by a composition of two
SP queries. When we want to find a shortest route from a vertex v1 to a vertex
v2 via a vertex v3, it is sufficient to find the shortest paths from v1 to v3 and from
v3 to v2. However, 3-SP is about three times slower than SP on our system. This
indicates that there are rooms for further improvement.

5.5 Summary and Discussions

In this chapter, we have developed a framework for optimal path querying. Inspired
from the derivation of algorithms for shortest path problems and their variants, we
designed a DSL for optimal path querying and proposed an optimal path querying
algorithm. The key to an efficient algorithm is incrementality condition for utilizing
our calculational laws and finiteness of the searching space for guaranteeing termi-
nation. From the viewpoint of finite state automata, the derivation of our querying
algorithm can be understood as the product construction. This viewpoint helps
us to introduce improvements of our querying algorithm. By putting together, we
derived an efficient querying algorithm that is a generalization of existing querying
algorithms. We also implemented our idea as an optimal path querying system. Our
implementation demonstrates promise of our framework in the sense that optimal
path querying is only several times slower than the shortest path querying.

Since optimal path querying is an important topic, there are many studies about
solving variants of shortest path problems, such as problems specified by additional
constraints and variation of costs [Jok66, DS88, Rom88, Pun91, MPRS99, BJM00,
BJ04,VD05,SJH06]. Optimal path querying systems were also proposed. For exam-
ple, regular-language-constrained shortest path queries on a time-dependent network
are available on the route planner of TRANSIMS system [BBJ+02, BBJ+07]. We
aimed to construct a general framework that includes many of them. However, there
are still several problems that our framework cannot deal with even though efficient
algorithms are known, for example maximum capacity path problems [Pun91] and
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context-free-language-constrained shortest path problems [BJM00]. Optimal path
querying on spatial databases is also a topic we have not taken into consideration.
Chan and Zhang [CZ07] proposed a generic optimal path querying algorithm on
spatial databases. Roughly speaking, the algorithm can deal with problems that
satisfy Bellman’s principle of optimality [Bel57], namely each subpath of the opti-
mal path is the optimal subpath. Our framework does not require such property,
while it seems difficult to implement our framework on spatial databases.

Ogawa et al. [OHS03] also proposed a framework to query and analyze graphs
efficiently. Their framework is, similar to ours, based on the work about maximum
marking problems by Sasano et al. [SHTO00]. While their framework can solve
general problems rather than path queries, it requires the underlying graph to be tree
decomposable [ALS91,Bod96,FFG02] and users to write recursive functions on the
structure of tree decompositions. Such requirements make the use of the framework
hard. Ikarashi et al. [ITNH08] proposed another framework for dealing with general
graph problems rather than path problems. They defined the modal µ-calculus on
natural numbers and discussed graph problems as model checking problems on the
calculus. However, it is not clear how practically useful their framework is; besides,
for path problems, our algorithm is more efficient than theirs.

Another way to generically solve constrained shortest path problems is the use of
ranking shortest path algorithms [Mar84,Epp98]. We can find an optimal path by
enumerating paths from shorter ones until a feasible path is found. Although this
procedure works for any constrained shortest path problems, neither computational
complexity nor termination of the procedure is hard to guarantee.

We reduced optimal path querying problems into minimum-weighed word prob-
lems on finite state automata. Actually, our derivation follows classical results about
correspondence among finite state automata, dynamic programming, and shortest
path problems. Karp and Held [KH67] showed that finite state automata provided
a good characterization of dynamic programming algorithms. Ibaraki [Iba73,Iba74,
Iba78] extended their results, and showed that once a problem is specified in a cer-
tain specific form by using finite state automata, we can reduce the problem into a
minimum-weighed word problem and solve it by an algorithm corresponding to its
form, which is exactly an algorithm for shortest path problems. Therefore, the issue
is the way to specify the problem by a finite state automaton.

We used product construction for reducing optimal path querying problems into
minimum-weighed word problems. Actually, the use of product construction to-
gether with on-the-fly construction for optimal path querying is not our new inven-
tion. Romeuf [Rom88] showed that regular-language-constrained shortest path prob-
lems can be reduced into shortest path problems by product construction. Barrett et
al. [BBJ+02] and Sherali et al. [SJH06] used on-the-fly construction of larger graphs
in their optimal path querying algorithms. Similar methods were also adopted by
de Moor et al. [dMLW03] and Liu et al. [LRY+04] to obtain algorithms for regular
path queries.

In summary, our result is not quite new from the algorithmic viewpoint. Our
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main contribution is to generalize these ideas to cope with a wider class of problems,
such as problems concerning integer-valued constraints, and to design a DSL-based
interface to the algorithmic results, and to provide a unified framework for optimal
path querying. The unified view makes it easy for nonspecialists to enjoy these
results.

Since we reduced optimal path problems into shortest path problems, known re-
sults about shortest path problems would be useful for our framework. For instance,
use of A* search algorithms or the bidirectional Dijkstra search algorithm, instead
of the use of Dijkstra algorithm, would improve efficiency. Ranking shortest path
algorithms [Mar84,Epp98] might be also useful to obtain nearly-optimal results.

As an extension of our framework, Kita [Kit08] considered combination of opti-
mal path problems and maximum marking problems. She discussed algorithms for
optimal path querying in which the objective-function value of a path is the mini-
mum/maximum marking of the edges on the path, and the marking should satisfy
a given requirement. It is relatively easy to find the path whose minimum feasible
marking is minimum, if feasibility of marking can be checked by a finite state au-
tomaton, because such problems are easily reduced into minimum-word problems as
similar to problems discussed in this chapter. However, it is difficult to find the path
whose maximum feasible marking is minimum, because we hardly reduce such prob-
lems into minimum-word problems. It is future work to provide clear and efficient
algorithms together with useful domain-specific languages for such generalizations.





Chapter 6

Calculational Laws for Parallel

Programming

The theme of this chapter is systematic development of divide-and-conquer algo-
rithms. In a divide-and-conquer algorithm, we first divide the problem into some in-
dependent subproblems, solve each subproblem independently, and finally merge the
results of independent subproblems to obtain the result of the whole problem. The
divide-and-conquer method is important not only for developing efficient sequential
algorithms but also for developing efficient parallel algorithms. Divide-and-conquer
algorithms are suitable for parallel computations, because independent subproblems
that can be computed in parallel. Divide-and-conquer parallel programs have their
merit of being suitable for cache-efficient implementation or implementation on dis-
tributed memory environments. Furthermore, divide-and-conquer parallel programs
are efficient in the sense that they will show a good scalability with respect to num-
ber of processors. Since recursive divisions yield a lot of independent subproblems
in divide-and-conquer algorithms, each processor is likely to sufficiently participate
in the computation.

Scalability with respect to number of processors is one of the most important
properties in parallel programming. If a parallel program has good scalability, it
shows magical speedup that other optimization techniques can hardly gain. If scala-
bility is poor, parallelization is nothing but an anti-optimization, because paralleliza-
tion usually requires overheads such as communication costs and synchronization
costs.

In this chapter, we would like to provide a methodology to develop divide-
and-conquer algorithms that will raise efficient parallel programs on exclusive-read
exclusive-write parallel random access machines (in short, EREW PRAM). Here,
“efficient” means “cost optimal”, that is, the program shows linear speedup with re-
spect to number of processors up to a large number of processors. The main issues
are the following three.

The main results of this chapter was published as [MM08] and [MMHT09].
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• How can we develop efficient and generic parallel algorithms?
• How can we characterize efficient divide-and-conquer parallel programs?
• How can we provide calculational laws that are useful to develop divide-and-

conquer parallel programs?

In Section 6.1, we review known results on lists. One of the most interesting
results is the third list-homomorphism theorem, which is a folk theorem in calcu-
lational programming community. The theorem states that if a function can be
written in two certain forms of sequential recursive programs, then there exists a
cost-optimal divide-and-conquer parallel program to compute the function. We con-
firm that the third list-homomorphism theorem is certainly effective for developing
parallel programs.

In Section 6.2, we consider node-valued binary trees. On binary trees, it is
known that parallel tree contraction [MR85] provides a framework for developing
cost-optimal parallel algorithms. After reviewing a parallel tree contraction algo-
rithm, we provide a characterization of functions that can be parallelized based
on parallel tree contraction. Then, we introduce the third list-homomorphism on
binary trees, which proves that if a function traversing a tree can be written in
two certain forms of sequential programs, then there exists a cost-optimal parallel
program to compute the function. The main idea is to write tree-iterating func-
tions as list-iterating functions so that we can utilize theories on lists. We focus on
paths from the root of the tree to leaves, express them by Huet’s zippers, which are
lists containing one-hole contexts of trees, and introduce the notion of path-based
computations.

In Section 6.3, we generalize the result in Section 6.2 to cope with all polynomial
data structures rather than lists or binary trees. We generalize all of the parallel tree
contraction algorithm, path-based computations, and the third list-homomorphism
theorem up to polynomial data structures. These results are exactly a generalization
of the known theories on lists, which indicates appropriateness of our approach.

6.1 Parallel Programming on Lists

6.1.1 List Homomorphisms

First, let us consider divide-and-conquer parallel programs on lists. As an example,
consider summing up the elements in a list [a1, a2, a3, a4, a5, a6, a7, a8]. It is easy to
develop sequential algorithms. Both of the rightward summation

((((((a1 + a2) + a3) + a4) + a5) + a6) + a7) + a8

and the leftward summation

a1 + (a2 + (a3 + (a4 + (a5 + (a6 + (a7 + a8))))))
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are sequential algorithms. In this case, it is not difficult to think of the divide-and-
conquer summation

((a1 + a2) + (a3 + a4)) + ((a5 + a6) + (a7 + a8))

where we divide the list at its center and compute each part in parallel. The divide-
and-conquer summation is a parallel algorithm, and it computes the sum of a list of
length n in ⌈log n⌉ steps if a sufficient number of processors are available.

The key to such a divide-and-conquer parallel algorithm is associativity. Com-
pare the two sequential algorithms with the divide-and-conquer algorithm. The
only differences are the structure of parentheses, and the associativity of +, namely
a+ (b+ c) = (a+ b) + c, enables us to rearrange the parentheses.

This observation, an associative operator raises a divide-and-conquer parallel
algorithm, is formalized as the notion of list homomorphisms [Bir87]. List homo-
morphisms are an expressive computation pattern for divide-and-conquer parallel
programs on lists.

Definition 6.1 (list homomorphism [Bir87]). A function h :A∗ → B is said to be a
list homomorphism if there exist a function φ : A→ B and an associative operator
(⊙) : (B ×B) → B such that

h([ ]) = ι⊙
h([a]) = φ(a)
h(x++ y) = h(x) ⊙ h(y)

hold, where ι⊙ is the unit of ⊙. In this case, we write h = hom⊙,φ.

An associative operator ⊙ characterizes a list homomorphism. The associativity
of ⊙ guarantees that the result of computation is not affected by the place to divide
the list. List homomorphisms are useful to develop parallel programs on lists, and
actually many studies were done on list homomorphisms [Bir87,Col94,Col95,Gib96,
Gor96,HIT97].

It is easy to see that hom⊙,φ for a list of length n can be evaluated on p processors
in O(n/p+ log p) time, if both φ and ⊙ is a constant-time computation. Thus, list
homomorphisms are cost optimal up to O(n/log n) processors. In other words, list
homomorphisms show good scalability with respect to number of processors.

Recall the summation as an example. The summation function sum satisfies the
following equations.

sum([ ]) = 0
sum([a]) = a
sum(x++ y) = sum(x) + sum(y)

Hence, sum is a list homomorphism, namely sum = hom+,id .
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6.1.2 The Third List-Homomorphism Theorem

The third list-homomorphism theorem [Gib96] is a folk theorem in calculational pro-
gramming community. The theorem shows a necessary and sufficient condition to
be a list homomorphism.

Theorem 6.2 (the third list-homomorphism theorem [Gib96]). A function h is a
list homomorphism if and only if there exist two operators ⊕ and ⊗ such that the
following equations hold.

h([a] ++ x) = a⊕ h(x)
h(x++ [a]) = h(x) ⊗ a

The third list-homomorphism theorem states that if we can compute a function
in both leftward and rightward manners, there exists a divide-and-conquer parallel
algorithm to evaluate the function. What the theorem proves is not only existence
of parallel programs but a way to develop parallel programs systematically. The
following lemma plays a central role in parallelization.

Lemma 6.3 ([Gib96,MMM+07]). Assume that the following equations hold for a
function h.

h([a] ++ x) = a⊕ h(x)
h(x++ [a]) = h(x) ⊗ a

Then, h = hom⊙,φ holds, where ⊙ and φ are defined as follows.

φ(a) = h([a])
a⊙ b = h(h◦(a) ++ h◦(b))

Lemma 6.3 states that we can derive a parallel program from two sequential
programs through their converse. Since a converse of a function is a relation in
general and difficult to reason, we will consider a right inverse rather than the
converse.

6.1.3 Developing Parallel Programs for Lists with the Third

List-Homomorphism Theorem

Summation

As a first example, let us review the summation function sum. As mentioned, sum
is both leftward and rightward.

sum([ ]) = 0
sum([a] ++ x) = a+ sum(x)
sum(x++ [a]) = sum(x) + a

Therefore, the third list-homomorphism theorem proves that sum is a list homo-
morphism. Next, let us derive a parallel program of sum based on Lemma 6.3. The
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lemma indicates that a right inverse brings a parallel program. It is easy to develop
a right inverse of sum. For example, the function wrap is a right inverse of sum,
because sum(wrap(sum(x))) = sum([sum(x)]) = sum(x) holds. Then, to obtain φ
and ⊙ such that sum = hom⊙,φ holds, we calculate as follows.

φ(a) = { Lemma 6.3 }
sum([a])

= { definition of sum }
a

a⊙ b = { Lemma 6.3 }
sum(sum◦(a) ++ sum◦(b))

= { refine sum◦ to wrap }
sum([a] ++ [b])

= { definition of sum }
a+ b

Therefore, φ = id and ⊙ = + hold. In summary, we have successfully derived a
parallel program for sum, which is exactly the divide-and-conquer summation.

Maximum Initial-segment Sum

Next, let us consider the maximum initial-segment sum problem, in which we would
like to compute the maximum of summations of initial segments of a list. For
example, maximum initial-segment sum of a list [1,−2, 1, 6,−5, 2, 1, ] is 1 + (−2) +
1 + 6 = 6, because [1,−2, 1, 6] is the initial segment of the maximum sum.

Let us program a solution of maximum initial segment problem, say mis , in both
leftward and rightward manner. It is relatively easy to develop a leftward program.

mis([ ]) = 0
mis([a] ++ x) = 0 ↑ (a+ mis(x))

Since a non-empty initial segment of [a]++xmust contain a, maximum initial segment
sum of [a] ++ x is the maximum of 0 (empty list) and a + mis(x) (maximum sum
segment containing a). Giving a rightward program is a bit difficult, and someone
may think of the following program.

mis([ ]) = 0
mis(x++ [a]) = mis(x) ↑ sum(x++ [a])

That is, the maximum initial-segment sum of a list x ++ [a] is either the maximum
initial segment sum of x or the whole list x ++ [a]. Although the program above is
correct, it is not a rightward program of mis because of the call of another function
sum. Tupling transformation [Fok89,Chi93,HITT97] is effective for such situations.
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Consider a function ms(x)
def
= (mis(x), sum(x)); then ms is rightward, as the follow-

ing calculations show.

ms([ ]) = { definition of ms }
(mis([ ]), sum([ ]))

= { definition of mis and sum }
(0, 0)

ms(x++ [a]) = { definition of ms }
(mis(x++ [a]), sum(x++ [a]))

= { definition of mis and sum }
(mis(x) ↑ (sum(x) + a), sum(x) + a)

= { definition of ms }
let (i, s) = ms(x) in (i ↑ (s+ a), s+ a)

Besides, the function ms is leftward, which is a direct consequence that both mis
and sum are leftward. In summary, ms is both leftward and rightward.

ms([ ]) = 0
ms([a] ++ x) = let (i, s) = ms(x) in (0 ↑ (a+ i), a+ s)
ms(x++ [a]) = let (i, s) = ms(x) in (i ↑ (s+ a), s+ a)

Therefore, we will consider deriving a parallel program for ms .

What is a right inverse of ms? Given two values, say i and s, a right inverse
of ms computes a list whose maximum initial-segment sum is i and sum is s. The
following function ms• might be a right inverse of ms .

ms•(i, s)
def
= [i, s− i]

The sum of [i, s−i] is certainly s, and the maximum initial-segment sum is hopefully
i. Actually ms• is a right inverse of ms , as the following calculation shows.

ms(ms•(ms(x))) = { definition of ms and ms• }
ms([mis(x), sum(x) − mis(x)])

= { definition of ms }
(0 ↑ mis(x) ↑ sum(x), sum(x))

= { claim: 0 ≤ mis(x) ∧ mis(x) ≥ sum(x) }
(mis(x), sum(x))

= { definition of ms }
ms(x)

It is not difficult to confirm the claim 0 ≤ mis(x) ∧ mis(x) ≥ sum(x). 0 ≤ mis(x)
is evident from the definition of mis , and mis(x) ≥ sum(x) can be easily proved by
induction.



6.1. Parallel Programming on Lists 105

Now that we have obtained a right inverse of ms , we can derive a list homomor-
phism hom⊙,φ that is equivalent to ms .

φ(a) = { Lemma 6.3 }
ms([a])

= { definition of ms }
(0 ↑ a, a)

(i1, s1) ⊙ (i2, s2) = { Lemma 6.3 }
ms(ms•(i1, s1) ++ ms•(i2, s2))

= { definition of ms• }
ms([i1, s1 − i1, i2, s2 − i2])

= { definition of ms }
(0 ↑ i1 ↑ s1 ↑ (s1 + i2) ↑ (s1 + s2), s1 + s2)

= { claim: 0 ≤ i1 ∧ i1 ≥ s1 ∧ i2 ≥ s2 }
(i1 ↑ (s1 + i2), s1 + s2)

It is sufficient to consider the case where both operands of ⊙ are in the range of ms ,
and thus, the claim certainly holds. In summary, the following parallel program is
obtained.

mis(x) = π1(ms(x))
ms([ ]) = (0, 0)
ms([a]) = (0 ↑ a, a)
ms(x++ y) = ms(x) ⊙ ms(y)
(i1, s1) ⊙ (i2, s2) = (i1 ↑ (s1 + i2), s1 + s2)

We have developed the operator ⊙ with no attention to its associativity. Al-
though the associativity of ⊙ is not apparent, Theorem 6.2 and Lemma 6.3 guaran-
tee the associativity of ⊙. This is the effectiveness of the third list-homomorphism
theorem.

Maximum Segment Sum

Next, we consider a bit more complicated example, the maximum segment sum
problem seen in Section 3.3.

We first try writing a program to compute maximum segment sum of a list in
both leftward and rightward manner.

mss([ ]) = 0
mss([a] ++ x) = mis([a] ++ x) ↑ mss(x)
mss(x++ [a]) = mss(x) ↑ mts(x++ [a])

In the program above, mts is a function that computes the maximum tail-segment
sum, which is the dual problem of the maximum initial segment sum problem.

As similar to the case of mis , the program of mss above is neither leftward nor
rightward, and thus, we apply tupling transformation. mss requires mis and mts ,
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and recall that mis requires sum for its rightward definition; thus we consider a

function mmms(x)
def
= (mss(x),mts(x),mis(x), sum(x)), which is both leftward and

rightward.

mmms([ ]) = (0, 0, 0, 0)
mmms([a] ++ x) = let (m, t, i, s) = mmms(x)

in (0 ↑ (a+ i) ↑ m, (a+ s) ↑ t, 0 ↑ (a+ i), a+ s)
mmms(x++ [a]) = let (m, t, i, s) = mmms(x)

in (m ↑ (t+ a) ↑ 0, (t+ a) ↑ 0, i ↑ (s+ a), s+ a)

Now we would like to derive its parallel program based on Lemma 6.3. However,
it is not trivial at all to develop a right inverse of mmms . A right inverse of mmms
takes four values, say m, t, i, and s, and returns a list whose sum is s, maximum
initial-segment sum is i, maximum tail-segment sum is t, and maximum segment
sum is m. In fact, the following function mmms• is a right inverse of mmms .

mmms•(m, t, i, s) = [i, s− i− t,m, t−m]

Let us confirm its correctness.

mmms(mmms•(mmms(x)))
= { definition of mmms and mmms• }

mmms([mis(x), sum(x) − mis(x) − mts(x),mss(x),mts(x) − mss(x)])
= { definition of mmms }

(0 ↑ mis(x) ↑ (sum(x) − mis(x) − mts(x)) ↑ mss(x) ↑ (mts(x) − mss(x)) ↑
(sum(x) − mts(x)) ↑ (sum(x) − mis(x) − mts(x) + mss(x)) ↑ mts(x) ↑
(sum(x) − mts(x) + mss(x)) ↑ (sum(x) − mis(x)) ↑ sum(x)),
sum(x) ↑ (sum(x) − mis(x)) ↑ mts(x) ↑ (mts(x) − mss(x)) ↑ 0,
0 ↑ mis(x) ↑ (sum(x) − mts(x)) ↑ (sum(x) − mts(x) + mss(x)) ↑ sum(x),
sum(x))

=

{
claims:

0 ≤ mis(x) ≤ mss(x), 0 ≤ mts(x) ≤ mss(x),
sum(x) ≤ mis(x), and sum(x) ≤ mts(x)

}

(mss(x), mts(x), mis(x) ↑ (sum(x) − mts(x) + mss(x)), sum(x))
= { claim: sum(x) + mss(x) ≤ mis(x) + mts(x) }

(mss(x), mts(x), mis(x), sum(x))
= { definition of mmms }

mmms(x)

We have required claims two times in the calculation. While the former is evident,
the latter is nontrivial. Let us prove the latter by induction. sum([ ]) + mss([ ]) ≤
mis([ ]) + mts([ ]) holds apparently. Now assume that sum(x) + mss(x) ≤ mis(x) +
mts(x) holds; then, sum([a] ++ x) + mss([a] ++ x) ≤ mis([a] ++ x) + mts([a] ++ x) is
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proved by the following calculation.

sum([a] ++ x) + mss([a] ++ x)
= { definition of sum, mss , and mis }

a+ sum(x) + (0 ↑ (a+ mis(x)) ↑ mss(x))
= { distributivity of + over ↑ }

(a+ sum(x)) ↑ (a+ sum(x) + a+ mis(x)) ↑ (a+ sum(x) + mss(x))
≤ { hypothesis }

(a+ sum(x)) ↑ (a+ sum(x) + a+ mis(x)) ↑ (a+ mis(x) + mts(x))
= { distributivity of + over ↑ }

(a+ sum(x)) ↑ (a+ mis(x) + ((a+ sum(x)) ↑ mts(x)))
= { definition of mts }

(a+ sum(x)) ↑ (a+ mis(x) + mts([a] ++ x))
≤ { a+ sum(x) = sum([a] ++ x) ≤ mts([a] ++ x) }

mts([a] ++ x) ↑ (a+ mis(x) + mts([a] ++ x))
= { distributivity of + over ↑ }

(0 ↑ (a+ mis(x))) + mts([a] ++ x)
= { definition of mis }

mis([a] ++ x) + mts([a] ++ x)

In summary, the function mmms• is certainly a right inverse of mmms .
Lastly, we derive a parallel program of mmms = hom⊙,φ based on Lemma 6.3.

φ(a) = { Lemma 6.3 }
mmms([a])

= { definition of mmms }
(a ↑ 0, a ↑ 0, a ↑ 0, a)

(m1, t1, i1, s1) ⊙ (m2, t2, i2, s2)
= { Lemma 6.3 }

mmms(mmms•(m1, t1, i1, s1) ++ mmms•(m2, t2, i2, s2))
= { definition of mmms• }

mmms([i1, s1 − i1 − t1,m1, t1 −m1, i2, s2 − i2 − t2,m2, t2 −m2])
= { definition of mmms (the detailed calculation is omitted) }

(m1 ↑ m2 ↑ (t1 + i2), (t1 + s2) ↑ t2, i1 + (s1 + i2), s1 + s2)

We have omitted the detailed calculation of the last step, in which we simply the
definition of the operator ⊙. It is not very difficult, but too lengthy to describe on
papers. In any case, the obtained parallel program is exactly the known efficient
parallel program of the maximum segment sum problem [Col94,Gor96,HIT97]. As
the same as the previous case, the derived operator ⊙ is proved to be associative by
its construction.

So far, we have developed a parallel program for the maximum segment sum
problem. Although our development is systematic, there are many difficult steps:
developing a right inverse, verifying the correctness of the right inverse, and sim-
plifying the operators raised from Lemma 6.3. Systems to aid in dealing with such
difficulties are called for.
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Table 6.1. Execution times of list homomorphisms (unit: millisecond)
#processors sequential 1 2 4 8 16 32 48 64

max 313 697 369 186 94 52 32 118 118
mis 329 540 270 137 68 34 26 33 107
mss 353 1299 652 331 165 98 50 40 39
atoi 414 1599 803 401 200 106 59 52 38

 0

 8

 16

 24

 32

 4  8  16  24  32  48  64

sp
ee

du
ps

numbers of processors

max
mis
mss
atoi

Figure 6.1. Speedup ratios against sequential implementations

6.1.4 Experiments

To demonstrate the scalability of list homomorphisms, we did some experiments. It
is worth noting that list homomorphisms do not rely on a specific parallel program-
ming environment. What list homomorphisms guarantees is correctness of divide-
and-conquer algorithms. In other words, efficiency of parallel programs depends
on the implementation of list homomorphisms. We adopted C++ parallel skele-
ton library SkeTo [MIEH06], in which we could use list homomorphisms directly as
components of parallel programs. We can make use of other parallel programming
frameworks, such as OpenMP [CJdP07] and Intel threading building blocks [Rei07],
by implementing list homomorphisms on them.

We prepared four examples: max that finds the maximum value in a list, mis
that computes the maximum prefix sum of a list, mss that computes the maximum
segment sum of a list, and atoi that converts a sequence of characters into a decimal
number. For comparison, we prepared a hand-written sequential program for each
example. We used a PC-cluster of uniform PCs connected with Gigabit Ethernet,
each of which consisted of dual Xeon 2.8 GHz CPUs and a 2 GB shared memory.
The OS, compiler, and libraries used were respectively Linux 2.6.18-AMD64, gcc
4.1.2, MPICH 1.2.7-p1, and SkeTo unpublished developers’ version. The input of
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Figure 6.2. Dividing a binary tree aggressively

each program is an array of 227 length containing integers.
Table 6.1 shows execution times with respect to numbers of processors, and the

speedup ratios against sequential programs are plotted in Figure 6.1. The time for
initial data distributions are excluded from execution times.

First, the parallel programs written with SkeTo library are slower than sequential
implementations when both are evaluated on a single processor. One reason is the
overhead of the use of SkeTo, and another is the overhead of parallelization. As
an example, consider the case of mis . The parallel program for mis computes two
values, while the sequential program of mis computes only one value. Therefore, it
is natural that the parallel program is about two times slower than the sequential
one.

Against the overhead, list homomorphisms are certainly scalable with respect
to the number of processors. The parallel implementations are faster than sequen-
tial implementations when more than four processors are available; moreover, the
implementations show good speedup until no more speedup is practically hopeless.

6.2 Parallel Programming on Binary Trees

Next, let us consider parallel programming on binary trees.
As an example, consider summing up all values in a tree. Someone may think of

a divide-and-conquer parallel algorithm raised by subtree structures, that is, com-
puting independent subtrees in parallel. However, such a naive parallel algorithm is
not generally scalable with respect to numbers of processors. Its speedup is limited
by the height of the input tree, and thus, it is not cost optimal, especially when the
input tree is ill-balanced. To obtain better scalability, we need to introduce more
aggressive divisions, like Figure 6.2. In this case, aggressive divisions yield a scalable
parallel algorithm, which computes the summation in time logarithmic in the size
of the tree with a sufficient number of processors.

Although the aggressive divisions bring a cost-optimal divide-and-conquer par-
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allel summation algorithm, there are mainly two difficulties to generalize the algo-
rithm. One is the algorithm to find appropriate division. The key to cost-optimal
parallel computations is a division that yields two structures of almost the same size.
However, it is nontrivial to find the “center” of a tree efficiently. The other difficulty
is that a division raises a structure that is not a binary tree. Recall Figure 6.2. After
the divisions, the upper part (containing 8, 9, and 6) and the right part (containing
1 and 4) are not binary trees. Therefore, for computation based on the aggressive
divisions, we should specify computations on a structure that is not a binary tree.
While there are no problems when we summing up values, it is problematic when
we consider more complicated computations on trees.

First, in Section 6.2.1, we review a cost-optimal parallel algorithm called par-
allel tree contraction algorithm, and develop divide-and-conquer parallel algorithms
based on the parallel tree contraction algorithm in Section 6.2.2. After that, in
Section 6.2.3, we introduce the third list-homomorphism theorem on binary trees,
and show some examples and experiments in Section 6.2.4.

6.2.1 Parallel Tree Contraction

In this section, we review parallel tree contraction, a framework of constructing
efficient parallel algorithms on trees. The parallel tree contraction problem is a
problem to provide a scheduling of contraction operations so that they can col-
lapse a tree efficiently in parallel with no conflict. Once an efficient parallel tree
contraction algorithm is developed, we can achieve many computations on a tree
efficiently in parallel by processing computations according to the schedule of con-
traction operations. First, Miller and Reif [MR85] introduced the notion of par-
allel tree contraction to develop an efficient parallel algorithm for evaluating ex-
pressions defined with +, −, ×, and /. After that, parallel tree contraction is
recognized as an important framework for constructing various parallel algorithms
on trees. Many studies have been done for efficient parallel tree contraction al-
gorithms [CV88,GR89,ADKP89,Rei93,MW97] and for implementation of various
computations on them [DK92,GCS94,Ski96,MHT06,Mat07b].

Let us review a parallel tree contraction algorithm proposed by Abrahamson et
al. [ADKP89], which is called the SHUNT1 contraction algorithm. The problem is
to collapse a tree in O(log n) steps, where each step consists of a set of independent
SHUNT operations defined as follows.

Definition 6.4 (SHUNT). Specified a leaf, a SHUNT operation removes the leaf
and its parent and connects the sibling of the leaf to its grandparent.

Figure 6.3 shows the behavior of a SHUNT operation. We call two SHUNT
operations are independent if no nodes simultaneously concern both of them. On
one hand, we require the SHUNT operations to be independent; otherwise, the

1The name “SHUNT” is later given in [Rei93].
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=⇒

Figure 6.3. A SHUNT operation

=⇒

Figure 6.4. A conflict of two SHUNT operations

tree structure will be broken as Figure 6.4. On the other hand, we would like to
apply many SHUNT operations simultaneously so as to accomplish the reduction
in O(log n) steps. Therefore, we need to develop a good conflict-free scheduling of
SHUNT operations. Abrahamson et al. [ADKP89] showed that a numbering on
leaves resolves this problem.

Procedure 6.5 (SHUNT contraction for binary trees).
(1) Number all leaves from left to right.
(2) Do SHUNT for all odd-numbered left leaves.
(3) Do SHUNT for all odd-numbered right leaves.
(4) Halve all numbers of leaves.
(5) Go to (2) until the tree consists of only one node.

Throughout the Procedure 6.5, all SHUNT operations in a step are independent.
Moreover, the Procedure 6.5 finishes the collapse of a tree of n nodes in O(log n)
steps, because steps (2) and (3) halve the number of leaves.

Next, let us consider computations on binary trees rather than a collapse. Here
we introduce algebraic computations as a general computation pattern on trees,
which are computations to evaluate tree-shaped expressions. Note that algebraic
computations form not only binary trees but also non-binary trees.

Definition 6.6 (algebraic computations [ADKP89]). A set of values S and a set of
functions F are given, where each element of F takes a fixed-sized tuple of elements
of S according to its arity and results in an element of S. An algebraic computation
defined by (S, F ) is a computation to evaluate expressions whose operators are
elements of F and values are elements of S.
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Abrahamson et al. gave a sufficient condition for parallelizing algebraic compu-
tations when the arity of each function is two.

Theorem 6.7 ([ADKP89]). Assume that there are a set of values S and two sets of
indexed functions F : (S × S) → S and G :S → S such that the following conditions
hold.

• Any element of F and G can be evaluated in O(1) time.
• For all fi ∈ F and a ∈ S, there exist functions gj, gk ∈ G such that fi(x, a) =
gj(x), fi(a, x) = gk(x), and the indexes j and k can be computed in O(1) time
from i and a.

• For all gi, gj ∈ G, there exists a function gk ∈ G such that gi(gj(x)) = gk(x)
holds and the index k can be computed in O(1) time from i and j.

Then, an algebraic computation defined by (S, F ) can be computed in O(n/p+log p)
time on an EREW PRAM with p processors, where n is the size of the expression.

Consider an algebraic computation as a tree whose internal nodes are functions
in F and leaves are values in S. Then, evaluating the algebraic computation is
equivalent to collapse the tree with computing the value of the tree. Therefore, we
can perform the computation efficiently in parallel according to the scheduling raised
by Procedure 6.5, if we can process computations corresponding SHUNT operations.
Here, notice that each function gi ∈ G corresponds to a one-hole context of a tree
representing an algebraic computation. Then, the third premise of Theorem 6.7
can be recognized as the requirement that we can merge two one-hole contexts
into one, which is the operation that the SHUNT operation exactly does. From a
computational viewpoint, each gi ∈ G corresponds to a continuation. We cannot
accomplish the whole computation for a one-hole context and its continuation is
left as a function. The third premise means that we can perform computations on
such continuations in the sense that a composition of two continuations yields a
continuation of the same size. Theorem 6.7 states that we can obtain a cost-optimal
parallel computation if we can perform such computation on continuations.

6.2.2 m-Bridges

While the SHUNT contraction algorithm is cost optimal, it is not a divide-and-
conquer algorithm. Moreover, the algorithm might not be efficient enough for prac-
tical use, especially for parallel computation on distributed-memory environments.
The reason of inefficiency is lack of locality. On distributed-memory environments,
it is important to arrange data in advance so that each processor can achieve its com-
putation with a little communication to other processors. However, in the SHUNT
contraction algorithm, it is difficult to predict which nodes will be processed by a
processor, and thus, it seems necessary that processors should communicate each
other for every contraction step.
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Figure 6.5. 6-critical nodes and 6-bridge: the number on each internal node shows
the size of the subtree rooted by the node, and nodes of concentric circles are 6-
critical nodes.

To resolve the problem, here we would like to introduce the m-bridge tech-
nique [Rei93,Mat07b], which enables us to divide a tree efficiently into almost the
same size and develop cost-optimal divide-and-conquer parallel algorithms on binary
trees.

First, we introduce the notion of m-bridges.

Definition 6.8 (m-critical node). Given a natural number m > 1, an internal
node v in a rooted tree is said to be m-critical if each child of v, say v′, satisfies
⌈size(v)/m⌉ > ⌈size(v′)/m⌉, where size(v) denotes the size of the subtree rooted by
v.

Definition 6.9 (m-bridge). For a tree t and a natural number m > 1, an m-bridge
of t is one of the largest connected subgraph of t such that its internal nodes except
its root are not m-critical.

Figure 6.5 shows m-critical nodes and m-bridges of a trees. It is worth noting
that m-critical nodes of a tree of n nodes can be computed on O(n/p + log p) time
on an EREW PRAM with p processors [Rei93].

The following lemmas show important properties of m-critical nodes and m-
bridges.

Lemma 6.10 ([Rei93]). The common ancestor of two m-critical nodes is m-critical.
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Lemma 6.11 ([Rei93]). The size of each m-bridge is at most m+ 1.

Lemma 6.12 ([Rei93]). The number of m-critical nodes in a tree of n nodes is at
most 2n/m− 1 for n > m.

For an at most k-ary tree of n nodes, consider the m-bridge of the tree, where
m = ⌈n/p⌉ and p is the number of processors. From Lemmas 6.11 and 6.12, the
size of each bridge is at most m+ 1, namely around n/p, and the number of bridges
is at most 2kn/m − 1, namely around 2kp. These bounds indicate that there will
be sufficiently many bridges of sufficiently large size. Therefore, we can fulfill load
balancing by distributing bridges to processors. The observation is formalized as
the following lemma.

Lemma 6.13. There exists a partition B1, B2, . . . , Bp of ⌈n/p⌉-bridges of an at
most k-ary tree of n-nodes such that the partition satisfies the following conditions,
if n ≥ 4p2 > 1 holds, where #B denotes the summation of sizes of bridges in B.

• For all 1 ≤ i, j ≤ p, #Bi ≤ 2 × #Bj holds.
• For all 1 ≤ i ≤ p, Bi contains at least one bridge whose size is larger than or

equal to n/(4k − 2)p2.

Proof. We prove the first condition by contradiction. Assume that #Bi > 2 × #Bj

holds. Without loss of generality, we assume that #Bi and #Bj are respectively
the largest and smallest ones. If Bi contains more than two bridges, then moving
its smallest bridge to Bj will provide a better partition. Thus, we can assume that
Bi consists only one bridge, and from Lemma 6.11, #Bi ≤ ⌈n/p⌉ + 1 holds. Since
Bi is the largest one,

∑

1≤k≤p

#Bk <
#Bi

2
+ (p− 1)#Bi <

(
p−

1

2

) (
n

p
+ 2

)
= n+ 2p−

n

2p
− 1 < n

holds. However, since B1, B2, . . . , Bp is a partition of ⌈n/p⌉-bridges of a tree of n
nodes, Σ1≤k≤p#Bk must be larger than n, and a contradiction occurs.

Next, we prove the second condition by contradiction. From the first condition,
each Bj satisfies #Bj > n/2p. Now assume that the size of the largest bridge of Bj

is less than n/(4k − 2)p2. Then, since each Bj retains at least one bridge, for the
number of bridges m,

m > (p− 1) +
n/2p

n/(4k − 2)p2
= (p− 1) + (2k − 1)p = 2kp− 1 ≥

2kn

⌈n/p⌉
− 1

holds. However, from Lemma 6.12, the number of bridges m is at most 2kn/⌈n/p⌉−
1, and a contradiction occurs.

As seen, the m-bridge technique provides a clever way to distribute trees to pro-
cessors. Therefore, we can obtain efficient divide-and-conquer parallel algorithms,
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if we can perform computations on bridges. However, a bridge is not a complete
subtree of the original tree and it seems difficult to perform computation on bridges.
Fortunately, we can provide a respectable sufficient condition for achieving compu-
tations on bridges. Recall Theorem 6.7, in which computations on one-hole contexts
are considered. Each bridge contains at most two critical nodes from Lemma 6.10,
and one is its root whenever a bridge has two critical nodes. Thus, each bridge
is either a tree or a one-hole context when we neglect all critical nodes and edges
connecting critical nodes. Therefore, it is sufficient for computations on bridges to
perform computations on one-hole contexts, which is the premise of Theorem 6.7.

In summary, the m-bridge technique enables us to develop efficient divide-and-
conquer parallel algorithms on binary trees, when the premise of Theorem 6.7 is
fulfilled. Matsuzaki [Mat07b,Mat07a] gave more detailed discussions including im-
plementation techniques.

6.2.3 The Third List-Homomorphism Theorem on Binary

Trees

So far, we have considered parallel algorithms on trees. Here we would like to develop
parallel programming on node-valued binary trees.

data TreeA = Leaf
| Node(A,TreeA,TreeA)

The goal of this subsection is to develop “the third list-homomorphism theorem”
for node-valued binary trees. Recall the third list-homomorphism theorem, which
states that a function is a list homomorphism if and only if it is both leftward
and rightward. “The third list-homomorphism theorem” on tree states that we can
efficiently compute a function in a divide-and-conquer manner if it is both downward
and upward. For this purpose, it is necessary to formalize downward computations,
upward computations, and divide-and-conquer parallel computations on trees.

As seen, divide-and-conquer parallel computations on trees can be formalized by
computations on one-hole contexts. Once computations on one-hole contexts are
specified, the m-bridge technique yields divide-and-conquer parallel computations.
To represent one-hole contexts, we use the notion of Huet’s zippers [Hue97]. Zippers
also provide a representation of paths, and thus, we can formalize downward and
upward computations based on zippers.

Now let us introduce zippers. A zipper is a list whose elements are contexts left
after a walk. According to a downward walking from the root of a tree, we construct
a zipper as follows: When we go down-right from a node, we add its left child to the
zipper; When we go down-left, we add the right child to the zipper. For example,
Figure 6.6 shows a correspondence between a zipper and a walk from the root to
the black node.

The zipper structures for node-valued binary trees can be specified by the fol-
lowing type, where components of the sum type respectively correspond to the left
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Figure 6.6. A zipper structure, which expresses a path from the root to the black
leaf

child and the right child.

type ZipperA = ((A,TreeA) + (A,TreeA))∗

When a walk ends at a leaf, a zipper stores the whole tree. The following function
z2t restores a tree from a zipper.

z2t([ ]) = Leaf
z2t([L(n, l)] ++ r) = Node(n, l, z2t(r))
z2t([R(n, r)] ++ l) = Node(n, z2t(l), r)

When a walk ends at an internal node, a zipper corresponds to a one-hole context
of a tree. Look at Figure 6.6 again. On one hand, the zipper represents the tree
with its path from the root to the black leaf. On the other hand, the zipper also
represents the one-hole context in which the black circle represents the hole. We
basically regard a zipper as a tree and call the hole terminal leaf.

We would like to summarize correspondences of a zipper, a tree (or a one-hole
context), and a path: A zipper corresponds to a tree with a terminal leaf (a one-hole
context) or a path from the root to the terminal leaf; An initial segment of a zipper
corresponds to a one-hole context containing the root or a path from the root to a
node; A tail segment of a zipper corresponds to a subtree containing the terminal
leaf (a one-hole context whose hole is the same as the hole of the original one) or a
path from a node to the terminal leaf.

Next we formalize downward and upward computations on binary trees.
Consider the following function sumTree, which sums up all values in a tree.

sumTree(Leaf ) = 0
sumTree(Node(n, l, r)) = n+ sumTree(l) + sumTree(r)

First we would like to develop its downward version. Since an initial segment
of a zipper corresponds to a path from the root to an internal node, the following
function sumTree↓ is downward in the sense that it performs its computation from
the root to the terminal leaf.

sumTree↓([ ]) = 0
sumTree↓(x++ [L(n, l)]) = sumTree↓(x) + n+ sumTree(l)
sumTree↓(x++ [R(n, r)]) = sumTree↓(x) + n+ sumTree(r)
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Notice that we use the function sumTree, because types of sumTree and sumTree↓

are different: sumTree has the type TreeR → R and computes the summation of
values in a tree; sumTree↓ has the type ZipperR → R and computes the summation
of values in a one-hole context.

Similarly, we can develop its upward version. Since a tail segment of a zipper
corresponds to a path from an internal node to the terminal leaf, the following
function sumTree↑ traverses a tree from its terminal leaf to its root.

sumTree↑([ ]) = 0
sumTree↑([L(n, l)] ++ x) = n+ sumTree(l) + sumTree↑(x)
sumTree↑([R(n, r)] ++ x) = n+ sumTree↑(x) + sumTree(r)

In this case, sumTree↑ and sumTree↓ are equivalent to sumTree in the sense that
sumTree↑ = sumTree↓ = sumTree ◦ z2t holds. However, computations on a path
may require more information than those on trees. To formalize correspondences
between computations on paths and those on trees, we introduce a notion of path-
based computations.

Definition 6.14 (path-based computation on binary trees). A path-based compu-
tation of a function h : TreeA → B is a function h′ : ZipperA → C such that there
exists a function ψ : C → B satisfying the following equation.

ψ ◦ h′ = h ◦ z2t

The equation above means that h′ simulates the computation of h and the result
is extracted by ψ. Note that z2t is a path-based computation of any function;
however it is useless in practice because no significant computations are managed
on paths. In other words, it is important to specify an appropriate path-based
computation.

Based on the notion of path-based computations, downward and upward com-
putations are defined as follows.

Definition 6.15 (downward computations on binary trees). A path-based compu-
tation of h :TreeA → B, say h′ : ZipperA → C, is said to be downward if there exists
an operator (⊗) : (C × ((A×B) + (A×B))) → C such that the following equations
hold.

h′(x++ [L(n, t)]) = h′(x) ⊗ L(n, h(t))
h′(x++ [R(n, t)]) = h′(x) ⊗ R(n, h(t))

Definition 6.16 (upward computations on binary trees). A path-based computa-
tion of h : TreeA → B, say h′ : ZipperA → C, is said to be upward if there exists an
operator (⊕) : (((A×B) + (A×B)) × C) → C such that the following equations
hold.

h′([L(n, t)] ++ x) = L(n, h(t)) ⊕ h′(x)
h′([R(n, t)] ++ x) = R(n, h(t)) ⊕ h′(x)
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Figure 6.7. Recursive division on a one-hole context: at each step, the one-hole
context is divided at the concentric circle node.

Well, we consider divide-and-conquer parallel computations on trees. For divide-
and-conquer computations, we would like to divide a tree at an arbitrary place and
compute each part in parallel. However, as seen in Figure 6.2, division of a tree
does not yield two trees of the original type but yields a one-hole context. Instead
of recursive division on trees, let us consider recursive division on one-hole contexts.
As shown in Figure 6.7, select a node on a path from the root to the hole, and divide
the one-hole context into three at the node: the upper part, the lower part, and a
complete subtree with the node. Apparently, we can recursively divide the upper
part and the lower part; in addition, we can obtain a one-hole context from the
complete subtree by taking off an arbitrary leaf, which leads to recursive division on
the subtree. It is worth noting that the division obtained by the m-bridge technique
is an instance of divisions obtained by this procedure.

Now, let us characterize divide-and-conquer parallel programs on node-valued
binary trees. We require three operations for parallel computation on trees: an
operation (say ⊙) that merges results of two one-hole contexts, an operation (say
φ) that takes a result of a complete tree and yields the result of the complete tree
with its parent, and an operation (say ψ) that computes a result of a complete tree
from that of a one-hole context. Since a one-hole context corresponds to a zipper, a
computation on a one-hole context can be specified by a path-based computation.

Definition 6.17 (decomposition on binary trees). A decomposition of a function
h : TreeA → B is a triple (φ,⊙, ψ) that consists of an associative operator ⊙ :
(C × C) → C and two functions φ : ((A×B) + (A×B)) → C and ψ :C → B such
that

ψ ◦ h′ = h ◦ z2t
h′([ ]) = ι⊙
h′([L(n, t)]) = φ(L(n, h(t)))
h′([R(n, t)]) = φ(R(n, h(t)))
h′(x++ y) = h′(x) ⊙ h′(y)

hold, where ι⊙ is the unit of ⊙. In this case, h is said to be decomposable.
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It is worth noting that a decomposition is a list homomorphism on zippers.
Define a function φ′ as φ′(L(n, t)) = φ(L(n, h(t))) and φ′(R(n, t)) = φ(R(n, h(t)));
then, h′ = hom⊙,φ′ . Therefore, associativity of ⊙ is necessary to guarantee that the
result of the computation is not affected by the node to divide the tree.

Actually decomposable functions can be efficiently evaluated in parallel based
on parallel tree contraction and the m-bridge technique.

Theorem 6.18. If (φ,⊙, ψ) is a decomposition of a function h and all of φ, ⊙, and
ψ are constant-time computations, then h can be evaluated for a tree of n nodes in
O(n/p+ log p) time on an EREW PRAM with p processors.

Proof. It is not difficult to prepare an algebraic computation corresponding to h
such that it satisfies the premise of Theorem 6.7.

The function sumTree is decomposable as the following equations show.

sumPara = sumTree ◦ z2t
sumPara([ ]) = 0
sumPara([L(n, l)]) = n+ sumTree(l)
sumPara([R(n, r)]) = n+ sumTree(r)
sumPara(x++ y) = sumPara(x) + sumPara(y)

In other words, (φ,+, id) is a decomposition of sumTree, in which φ is defined by
φ(L(n, v)) = n+ v and φ(R(n, v)) = n+ v.

Lastly, we would like to introduce “the third list-homomorphism theorem” on
node-valued binary trees, which shows a necessary and sufficient condition of exis-
tence of a decomposition.

Theorem 6.19 (the third list-homomorphism theorem on binary trees). A function
h is decomposable if and only if there exists a path-based computation of h that is
both downward and upward.

Proof. Later we will prove a stronger theorem (Theorem 6.33).

The statement of Theorem 6.19 is similar to the third list-homomorphism the-
orem. The observation underlying the theorem is that associative operators bring
divide-and-conquer parallel programs not only on lists but also on trees. Moreover,
as the same as the case of lists, we can provide the following lemma that is useful
to develop parallel programs.

Lemma 6.20. Assume that a function h′, which is a path-based computation of
h satisfying ψ ◦ h′ = h ◦ z2t , is both downward and upward; then, there exists a
decomposition (φ,⊙, ψ) of h such that the following equations hold.

φ(L(v, h(t))) = h′([L(v, t)])
φ(R(v, h(t))) = h′([R(v, t)])
a⊙ b = h′(h′◦(a) ++ h′◦(b))

Proof. Later we will prove a stronger lemma (Lemma 6.32).
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6.2.4 Developing Parallel Programs for Binary Trees with

the Third List-Homomorphism Theorem

In this subsection, we demonstrate how to develop divide-and-conquer parallel pro-
grams based on the third list-homomorphism theorem on trees, namely Theorem 6.19
and Lemma 6.20. Our development consists of two steps. First, we seek an appro-
priate path-based computation that is both downward and upward. After that, we
obtain a decomposition that enables us to utilize parallel tree contraction.

Summation

The first example is the function sumTree. Recall that a path-based computation
of sumTree (say st) is both downward and upward, because of st = sumTree↓ =
sumTree↑. Therefore, Theorem 6.19 proves that there is a decomposition of sumTree.
Lemma 6.20 shows a way to obtain a decomposition (φ,⊙, ψ). In this case, ψ is the
identity function id , because sumTree ◦ z2t = st holds. Obtaining the function φ is
easy as the following calculation shows, where C is either L or R.

φ(C(n, sumTree(t))) = { Lemma 6.20 }
st([C(n, t)])

= { definition of st }
n+ sumTree(t)

Thus φ(C(n, r)) = n+ r. The last is an associative operator ⊙. Lemma 6.20 states
that a right inverse of st enables us to derive the operator. It is not difficult to give
a right inverse.

st•(s) = [L(s,Leaf )]

The function st• is a right inverse of st , because st(st•(s)) = st([L(s,Leaf )]) = s
holds. Now we can obtain a definition of ⊙ as follows.

a⊙ b = { Lemma 6.20 }
st(st•(a) ++ st•(b))

= { definition of st• }
st([L(a,Leaf ), L(b,Leaf )])

= { definition of st }
a+ b

We have obtained a decomposition of sumTree, which is exactly the same as the one
we showed before.

Maximum Path Weight

Next, let us consider a small optimization problem to compute the maximum weight
of paths from the root to a leaf. For simplicity, we assume that the value of each
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node is non-negative. The following sequential program solves the problem.

maxPath(Leaf ) = 0
maxPath(Node(n, l, r)) = n+ (maxPath(l) ↑ maxPath(r))

Our objective is to develop a parallel program to solve the problem. First, we
try to obtain a downward definition, and may think of the following program.

maxPath↓([ ]) = 0
maxPath↓(x++ [L(n, l)]) = maxPath↓(x) ↑ (pathWeight(x) + n+ maxPath(l))
maxPath↓(x++ [R(n, r)]) = maxPath↓(x) ↑ (pathWeight(x) + n+ maxPath(r))
pathWeight([ ]) = 0
pathWeight(x++ [L(n, l)]) = pathWeight(x) + n
pathWeight(x++ [R(n, r)]) = pathWeight(x) + n

Notice that the function maxPath↓ is not downward, because it uses an auxiliary
function pathWeight that computes the weight of the path from the root to the ter-
minal leaf. As seen in the case of lists, tupling transformation is helpful. Consider a

function maxPath ′
↓ defined by maxPath ′

↓(x)
def
= (maxPath↓(x), pathWeight(x)), which

computes the maximum path weight of the tree and the weight of the path to the
terminal leaf in the same time. Apparently maxPath ′

↓ is a path-based computation
of maxPath; in addition, it is downward.

maxPath ′
↓([ ]) = (0, 0)

maxPath ′
↓(x++ [L(n, l)]) = let (m,w) = maxPath ′

↓(x)
in (m ↑ (w + n+ maxPath(l)), w + n)

maxPath ′
↓(x++ [R(n, r)]) = let (m,w) = maxPath ′

↓(x)
in (m ↑ (w + n+ maxPath(r)), w + n)

Therefore, maxPath ′
↓ seems an appropriate path-based computation for maxPath,

and we would like to give its upward definition. The following function maxPath ′
↑

is the upward one.

maxPath ′
↑([ ]) = (0, 0)

maxPath ′
↑([L(n, l)] ++ x) = let (m,w) = maxPath ′

↑(x)
in (n+ (m ↑ maxPath(l)), n+ w)

maxPath ′
↑([R(n, r)] ++ x) = let (m,w) = maxPath ′

↑(x)
in (n+ (m ↑ maxPath(r)), n+ w)

Now that we have confirmed that the function maxPath ′
↓ = maxPath ′

↑ (say mp) is
both downward and upward, Theorem 6.19 shows existence of its parallel program,
which can be derived based on Lemma 6.20.

Obtaining φ is straightforward, and φ(C(n,m)) = (n +m,n), where C is either
L or R. To obtain an associative operator ⊙, we would like to find a right inverse of
mp. It is not very difficult, and the following function mp• is a right inverse of mp.

mp•(m,w) = [L(w,Node(m− w,Leaf ,Leaf ))]
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Figure 6.8. An outline of mp•(m,w): the black circle represents the terminal leaf.

Figure 6.8 shows an outline of mp•, which would be helpful to understand mp•.
Notice that mp(t) = (m,w) implies m ≥ w. Therefore, the function mp• is certainly
a right inverse of mp, because given a tree [L(w,Node(m − w,Leaf ,Leaf ))] where
m ≥ w, the maximum path weight of the tree is m and the path weight to the
terminal leaf is w. Now we derive the operator ⊙ as follows.

(m1, w1) ⊙ (m2, w2)
= { Lemma 6.20 }

mp(mp•(m1, w1) ++ mp•(m2, w2))
= { Definition of mp• }

mp([L(w1,Node(m1 − w1,Leaf ,Leaf )), L(w2,Node(m2 − w2,Leaf ,Leaf ))])
= { Definition of mp }

(m1 ↑ (w1 +m2), w1 + w2)

Lemma 6.20 guarantees the associativity of the derived operator ⊙. In summary,
we obtain the following parallel program.

maxPath ◦ z2t = π1 ◦ mp
mp([ ]) = (0, 0)
mp([L(n, t)]) = (n+ maxPath(t), n)
mp([R(n, t)]) = (n+ maxPath(t), n)
mp(z1 ++ z2) = mp(z1) ⊙ mp(z2)
(m1, w1) ⊙ (m2, w2) = (m1 ↑ (w1 +m2), w1 + w2)

Leftmost Odd Number

The next example is a small query to find the leftmost odd number in a tree. In
fact, this problem can be solved by flattening the tree into a list and considering
a divide-and-conquer algorithm on the list. Here we will derive a parallel program
without such clever observation.

Function leftOdd : TreeR → (R ∪ 1) below returns the leftmost odd number in
the input tree if one exists; otherwise, it returns special value () that stands for
emptiness.

leftOdd(Leaf ) = ()
leftOdd(Node(n, l, r)) = case leftOdd(l) of

() → if odd(n) then n else leftOdd(r)
v → v



6.2. Parallel Programming on Binary Trees 123

In the downward computation of leftOdd , we need to determine whether a nearly-
leaf odd number is the leftmost one or not. For this purpose, we add additional
information to the result: L(v) and R(v) respectively correspond to an odd number
v at the left and the right of the terminal leaf.

leftOdd↓([ ]) = ()
leftOdd↓(x++ [L(n, l)]) = case leftOdd↓(x) of

L(v) → L(v)
a→ case leftOdd(l) of

() → if odd(n) then L(n) else a
v → L(v)

leftOdd↓(x++ [R(n, r)]) = case leftOdd↓(x) of

L(v) → L(v)
a→ if odd(n) then R(n)

else case leftOdd(r) of () → a
v → R(v)

Function leftOdd↓ is a path-based computation of leftOdd : define ψ by ψ() = () and
ψ(C(v)) = v where C is either L or R; then ψ ◦ leftOdd↓ = leftOdd ◦ z2t holds. Next,
we would like to derive its upward definition.

leftOdd↑([ ]) = ()
leftOdd↑([L(n, l)] ++ x) = case leftOdd(l) of

() → if odd(n) then L(n) else leftOdd↑(x)
v → L(v)

leftOdd↑([R(n, r)] ++ x) = case leftOdd↑(x) of

() → if odd(n) then R(n)
else case leftOdd(r) of () → ()

v → R(v)
a→ a

In summary, leftOdd↓ = leftOdd↑ (say lo) is both downward and upward, and The-
orem 6.19 proves that leftOdd is decomposable.

Now let us derive a decomposition (φ,⊙, ψ) of leftOdd . Here, ψ is the one that
we have given. Obtaining φ is straightforward as the same as the previous cases.
From Lemma 6.20, it is sufficient to work out a right inverse of lo for deriving ⊙. It
is not difficult, and the following function lo• is a right inverse of lo.

lo•() = []
lo•(L(v)) = [L(v,Leaf )]
lo•(R(v)) = [R(v,Leaf )]

Then, we can derive a decomposition of leftOdd after a small amount of calcula-
tion. We would like to omit the calculation, because it is slightly boring though
straightforward. The parallel program obtained is the following.
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leftOdd ◦ z2t = ψ ◦ lo
ψ() = ()
ψ(L(v)) = v
ψ(R(v)) = v
lo([ ]) = ()
lo([L(n, t)]) = case leftOdd(t) of () → if odd(n) then L(n) else ()

v → L(v)
lo([R(n, t)]) = if odd(n) then R(n) else case leftOdd(t) of () → ()

v → R(v)
lo(z1 ++ z2) = case (lo(z1), lo(z2)) of (L(v),−) → L(v)

(R(v), ()) → R(v)
(−, r) → r

The key is distinguishing two kinds of odd numbers: those that are to the left of
the terminal leaf and those that are to the right. Writing downward/upward pro-
grams is helpful for noticing such case analyses necessary for parallel computations.

Height

As the final example, let us consider computing the height of a tree.

height(Leaf ) = 1
height(Node(−, l, r)) = 1 + (height(l) ↑ height(r))

This problem is similar to the maximum path weight problem, and we can specify
downward and upward definitions in a similar way.

height↓([ ]) = (1, 1)
height↓(x++ [L(−, l)]) = let (h, d) = height↓(x)

in (h ↑ (d+ height(l)), d+ 1)
height↓(x++ [R(−, r)]) = let (h, d) = height↓(x)

in (h ↑ (d+ height(r)), d+ 1)
height↑([ ]) = (1, 1)
height↑([L(−, l)] ++ x) = let (h, d) = height↑(x)

in (1 + (h ↑ height(l)), d+ 1)
height↑([R(−, r)] ++ x) = let (h, d) = height↑(x)

in (1 + (h ↑ height(r)), d+ 1)

The function height↓ = height↑ (say ht) computes the height of a tree in its first
result, and its second result retains the depth of the terminal leaf. The function ht
is a path-based computation of height , because π1 ◦ ht = height ◦ z2t holds.

Now we would like to parallelize it. The only nontrivial part is the part to obtain
an efficient associative operator from its right inverse. In this case, different from
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Figure 6.9. An outline of ht• (h1, d1) ++ ht• (h2, d2): the curved arrow denotes the
plugging operation, which corresponds to the concatenation of two zippers.

the previous examples, we should define a right inverse ht• in a recursive manner
because ht•(h, d) should yield a tree of height h. Therefore, it seems difficult to
simplify the definition of ⊙, even though a naive definition of ⊙, namely a ⊙ b =
ht(ht•(a) ++ ht•(b)), is inefficient. In truth, that simplification is not difficult. Look
at Figure 6.9, which shows an outline of the tree ht•(h1, d1) ++ ht•(h2, d2). The left
and right trees respectively correspond to ht•(h1, d1) and ht•(h2, d2), and the curved
arrow corresponds to the concatenation operation on zippers. Now it is easy to see
that the height of this tree is h1 ↑ (d1 + h2) and the depth of the terminal leaf is
d1 + d2. In short, the following provides a definition of ⊙.

(h1, d1) ⊙ (h2, d2) = (h1 ↑ (d1 + h2), d1 + d2)

Then, we get the following parallel program for height .

height ◦ z2t = π1 ◦ ht
ht([ ]) = (1, 1)
ht([L(n, t)]) = (1 + height(t), 2)
ht([R(n, t)]) = (1 + height(t), 2)
ht(z1 ++ z2) = let (h1, d1) = ht(z1)

(h2, d2) = ht(z2)
in (h1 ↑ (d1 + h2), d1 + d2)

We have considered how to merge the results of independent substructures by
using an abstract image in Figure 6.9. The most significant thing is that Theo-
rem 6.19 guarantees the correctness of the merging operation obtained from the
image. Theorem 6.19 proves that the results of ht , namely the height of the tree
and the depth of the terminal leaf, are sufficient for merging the results of two parts;
thus, we can derive a correct merging operation no matter what shape of trees we
image for ht•.

6.2.5 Experiments

To confirm the scalability of the derived parallel programs, we made some experi-
ments. The environment for the experiments is the same as that in Section 6.1.4.
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Figure 6.10. Speedup ratios against a sequential implementation for a complete
binary tree: the sequential implementation ends up in 0.85 seconds.
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Figure 6.11. Speedup ratios against a sequential implementation for a randomly
generated tree: the sequential implementation ends up in 0.98 seconds.
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Figure 6.12. Speedup ratios against a sequential implementation for a monadic tree:
the sequential implementation ends up in 0.56 seconds.
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Given the sequential definition and the derived parallel program of each problem,
we prepared two implementations of divide-and-conquer parallel algorithm. One is
the naive divide-and-conquer parallel algorithm: using the sequential definition, we
compute the value of some independent subtrees in parallel, and after that, compute
the rest part sequentially. The other is the SHUNT contraction algorithm with the
m-bridge technique, which is implemented in C++ parallel programming library
SkeTo [MIEH06]. To reduce the overheads of parallelization, we use the sequential
definition as much as possible. We compute the result of subtrees allocated to a
processor by using the sequential definition.

We prepared three trees of 226 − 1 nodes containing integers: a complete binary
tree, a randomly generated tree, and a monadic tree. We measured execution times,
from which times for initial data distributions are excluded, for the three examples:
maximum path weight, leftmost odd number, and height. The results of these
three were very similar, and we only report the result of the maximum path weight
problem.

Figures 6.10, 6.11, and 6.12 show the results of our experiments, in which we
plot speedup ratios against sequential implementations. For a complete binary tree,
both implementations show good scalability. It is worth noting that the parallel-
tree-contraction-based method is as fast as the naive divide-and-conquer implemen-
tation. The m-bridge technique yields the same division as the naive division on
complete binary trees, and thus, we can make full use of the sequential definition
in the parallel-tree-contraction-based method; in short, both implementation does
completely the same computation. For a randomly generated tree and a monadic
tree, the naive divide-and-conquer implementation shows poor scalability. It is be-
cause computation of a relatively large subtree forms a bottleneck. The parallel-
tree-contraction-based method shows good scalability even for these trees. However,
scalability is relatively bad for the monadic tree. In this case, few computations are
performed by using sequential definition because few subtrees are allocated to a
processor. Then, the overheads of parallelization come to the surface and affect
efficiency.

6.3 Parallel Programming on Non-Binary Trees

So far, we have considered binary trees, on which parallel tree contraction are useful
for developing efficient parallel algorithms. However, contrary to rich studies on
binary trees, few studies consider non-binary trees. Some studies just mentioned that
non-binary trees can be encoded as binary trees. However, such encoding is often
troublesome because it breaks the original structure. For example, consider that we
want to compute the height of a non-binary tree, and we encode the tree as a binary
tree. Then, the height of the binary tree is not that of the original tree anymore.
Moreover, we have several kinds of binary-tree encoding for a single tree, and we
need to select an appropriate binary-tree encoding to develop an efficient parallel
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=⇒

Figure 6.13. An M-SHUNT operation (marked nodes are colored)

algorithm on it. In short, the binary-tree encoding makes problems complicated.
In this section, we extend results on binary trees shown in the previous sec-

tion. We consider trees of bounded degrees, propose a new parallel tree contraction
algorithm for them, and prove “the third list-homomorphism theorem” on them.

6.3.1 Parallel Tree Contraction Algorithm for Non-Binary

Trees

Here, we propose a new parallel tree contraction algorithm that works well even
for non-binary trees. Our algorithm is a generalization of the SHUNT contraction
algorithm [ADKP89]. An important feature of our algorithm is that it requires no
binary-tree encoding. Therefore, it is easy to develop parallel algorithms based on
our parallel tree contraction algorithm. Our algorithm is cost optimal if the maxi-
mum degree of the underlying tree is O(1). In addition, we show sufficient conditions
when computations can be parallelized based on our algorithm. Our sufficient con-
ditions are generalizations of those known on binary trees [GR89,ADKP89].

We assume that a tree has no unary node; otherwise, we remove such a node by
inserting a dummy leaf.

In the case of binary trees, a leaf has a unique sibling, and thus, we can define the
SHUNT operation to be applied to a leaf. In the case of non-binary trees, however,
a single leaf does not necessarily specify its sibling nor a SHUNT operation. We
introduce marks on leaves to specify a SHUNT operation.

Definition 6.21 (SHUNT operation with marks). A SHUNT operation with marks
(we will call it M-SHUNT ) is an operation applied to an internal node whose children
are one unmarked node and the other marked leaves. An M-SHUNT operation
removes the internal node and all its marked children and connects the unmarked
child to the parent of the internal node.

Figure 6.13 shows the behavior of an M-SHUNT operation. Note that an M-
SHUNT operation to a binary internal node is isomorphic to the usual SHUNT
operation. We consider that each removal of a node takes O(1) time; thus, an
M-SHUNT operation for a k-ary node takes O(k) time.

The following procedure is our parallel tree contraction algorithm for non-binary
trees.
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Procedure 6.22 (SHUNT contraction for non-binary trees).
(1) Number all leaves from left to right.
(2) Mark all odd-numbered leaves that have an unmarked right sibling, and apply

M-SHUNT operations to all the possible nodes.
(3) Mark all odd-numbered unmarked leaves, and apply M-SHUNT operations to

all the possible nodes.
(4) Erase the numbers of the marked leaves, and halve those of the unmarked

leaves.
(5) Go to (2) until the tree consists of only one node.

It is worth noting that Procedure 6.22 is equivalent to Procedure 6.5 when the
input is a binary tree. In this sense, we can state that Procedure 6.22 is a gener-
alization of Procedure 6.5. Actually, Procedure 6.22 inherits good characteristics
from Procedure 6.5.

Lemma 6.23. Procedure 6.22 raises no conflicting applications of M-SHUNT op-
erations.

Proof. Note that unmarked leaves are numbered from left to right throughout the
procedure.

Let v1 be the parent of an internal node v2.
First we prove by contradiction that simultaneous M-SHUNT operations to v1

and v2 never occur in the step (2). Let l1 be the rightmost newly marked leaf of v1

and l2 be the leftmost newly marked leaf of v2. By the assumption that M-SHUNT
operations are applicable to both v1 and v2, v1 has exactly one unmarked child that
is v2, and v2 has the only unmarked child on the right of l2. Because l1 is newly
marked and v2 is the only unmarked child of v1, v2 is a right sibling of l1, and
thus the number of l1 is less than that of l2. Since even-numbered leaves remain
unmarked, an unmarked even-numbered leaf (say l3) should exist between l1 and l2.
Here, l3 is not a child of v1 because v1 has the only unmarked child v2; l3 is not a
descendant of v2 because v2 should have the unmarked child on the right of l2 but
not on the left of l2. Therefore, such a leaf l3 must not exist and a contradiction
occurs.

The case for the step (3) is similar. Let l1 be the leftmost newly marked leaf of
v1, l2 be the rightmost newly marked leaf of v2, and l3 be an even-numbered leaf
between l1 and l2. Notice that since v2 is an unmarked child of v1 and l1 is not
marked in the previous step, l1 is a right sibling of v2 and the number of l1 is greater
than that of l2. Obviously l3 is not a child of v1. If l3 is a child of v2, then l3 is
an unmarked right sibling of l2 due to the order of l1 and l2, but in such a case l2
should be marked in the previous step (2), which is a contradiction.

Theorem 6.24. Procedure 6.22 runs in O(kn/p+k log p) time on an EREW PRAM
with p processors, where n is the size of the tree and k is the maximum degree of
the tree.
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Proof. Correctness on the EREW PRAM follows from Lemma 6.23.
The step (1) can be implemented by the Euler-tour technique with the list rank-

ing procedure and is done in O(kn/p + k log p) time. Since an M-SHUNT opera-
tion costs O(k) time, the cost of the theorem is achieved if the steps (2)–(5) take
O(n/p + log p) steps. Since the number of unmarked leaves decreases into the half
through a sequence of the steps (2)–(5), the cost is achieved as the case of Proce-
dure 6.5.

Note that the complexity is cost optimal when p is O(n/log n) and k is O(1).
An important fact is that Procedure 6.22 requires no binary-tree encoding; thus,

it is helpful for developing parallel algorithms. The following theorem shows a
sufficient condition to achieve parallel computations following the Procedure 6.22,
which is a generalization of Theorem 6.7.

Theorem 6.25. Assume that there are a set of values S and two sets of indexed
functions F and G such that the following conditions hold.

• Any element of F and G can be evaluated in O(1) time.
• For all fi ∈ F and a1, a2, . . . , al−1, al+1, . . . , ak ∈ S, where k is the arity of fi,

there exists a function gj ∈ G such that fi(a1, . . . , al−1, x, al+1, . . . , ak) = gj(x)
holds and the index j can be computed from a1, . . . , al−1, al+1, . . . , ak, l, and i
in O(k) time.

• For all gi, gj ∈ G, there exists a function gm ∈ G such that gi(gj(x)) = gm(x)
holds and the index m can be computed in O(1) time from i and j.

Then, an algebraic computation defined by (S, F ) can be computed in O(n/p+log p)
time on an EREW PRAM with p processors, where n is the size of the expression.

Proof. We can assume that G contains the identity function without loss of gener-
ality. As a preprocess, associate the index of the identity function to each internal
node. After that, run Procedure 6.22 with performing computation described bellow
when an M-SHUNT operation is applied to a node. Let fj ∈ F and p respectively
be the operator and the index stored at the node. If all children of the node are
leaves whose values are a1, . . . , ak, store gp(fj(a1, . . . , ak)) to the leaf left after the
M-SHUNT operation. If l-th child of the node is an internal node that stores an
index q and values of other children are a1, . . . , al−1, al+1, . . . , ak, update the index
q by r such that gr(x) = gp(fj(a1, . . . , al−1, gq(x), al+1, . . . , ak)) holds.

It is not difficult to see that the procedure above yields the result of the algebraic
computation; besides, because arity of each function in F is at most constant, it
runs in O(n/p+ log p) time.

A direct consequence of Theorem 6.25 is a parallel algorithm to evaluate algebraic
computations whose carrier is finite, which is a generalization of the known result
where operators are binary [GR89].
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Corollary 6.26. If the size of the set S is O(1) and each element of F can be eval-
uated in O(1) time, any algebraic computation defined by (S, F ) can be computed
in O(n/p + log p) time on an EREW PRAM with p processors, where n is the size
of the expression.

Proof. Let each functions in G required in Theorem 6.25 be a transition table from
S to S. Since the size of S is O(1), the size of a table is O(1) and a composition of
two tables can be evaluated in O(1) time.

Corollary 6.26 yields, for example, an efficient parallel evaluation algorithm for
arithmetic expressions consisting of +, −, ×, /, and conditional operators, on a
Galois field.

It is worth noting that the set of functions G in Theorem 6.25 corresponds to
the set of continuations raised from one-hole contexts of trees, as the same as the
case of Theorem 6.7. In other words, computations on one-hole contexts are key
to parallel computations even on non-binary trees. An important consequence of
this observation is that the m-bridge technique is applicable for trees of bounded
degrees. As the same as the case of binary trees, Lemma 6.10 indicates that each
bridge corresponds to a one-hole context; moreover, from Lemmas 6.11 and 6.12, the
m-bridge technique yields good load-balancing when the maximum degree is O(1).
Therefore, the premise of Theorem 6.25 implies efficient divide-and-conquer parallel
algorithms on trees of bounded degrees.

6.3.2 The Third List-Homomorphism Theorem on Polyno-

mial Data Structures

Next, we generalize the programming part. We would like to generalize the notions
of path-based computations, upward computations, downward computations, and
decompositions. Based on them, we prove the third list-homomorphism theorem on
polynomial data structures. Since polynomial data structures can be seen as trees
of bounded degrees, the tree contraction algorithm in the previous subsection leads
to efficient parallel computations.

To introduce zippers for polynomial data structures, we follow McBride [McB01]
who showed a systematic derivation of zippers based on derivatives on functors. The
derivative of a polynomial functor F, denoted by ∂F, is a polynomial functor defined
as follows, where • denotes a distinguishable element.

∂(!A) = !∅
∂(I) = !{•}
∂(F × G) = F × ∂G + ∂F × G

∂(F + G) = ∂F + ∂G

The functor ∂F corresponds to a one-hole context structure of F. The zipper
structure of µF, denoted by ZF, is recognized as ZF = (∂F(µF))∗.
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To convert zippers to trees, we use an operator (⊳F) : (ZF × µF) → µF, which is
defined by

z ⊳F t = foldr⋖F,t(z)

where (⋖F) : (∂F(µF) × µF) → µF is the plugging-in operator [McB01] defined as
follows.

a⋖!A t = a
• ⋖I t = t
L(a, b) ⋖F×G t = (a, b⋖G t)
R(a, b) ⋖F×G t = (a⋖F t, b)
L(a) ⋖F+G t = L(a⋖F t)
R(b) ⋖F+G t = R(b⋖G t)

We will omit the subscript of ⊳F when it is apparent form its context.
Notice that the operator ⊳ takes an additional tree to convert a zipper to a tree,

because a zipper corresponds to a one-hole context. We would like to minimize
the differences between zippers and trees, and thus, we force the difference between
zippers and trees to be leaves. A set of leaves of µF, denoted by leavesµF, is formalized
as follows.

leavesµF = [[F]]leaves
[[!A]]leaves = A
[[I]]leaves = ∅
[[F × G]]leaves = [[F]]leaves × [[G]]leaves
[[F + G]]leaves = [[F]]leaves + [[G]]leaves

Downward and upward computations are formalized as follows.

Definition 6.27 (path-based computation). A function h′ : ZF → B is said to be
a path-based computation of a function h : µF → A if there exists an operator ⊖ :
(B × µF) → A such that the following equation holds for all t ∈ leavesµF.

h(z ⊳ t) = h′(z) ⊖ t

Definition 6.28 (downward computation). A function h′ :ZF → B, which is a path-
based computation of a function h :µF → A, is said to be downward if there exist an
operator (⊗) : (B × ∂FA) → B and a value e ∈ B such that the following equation
holds.

h′ = foldl⊗,e ◦ map∂Fh

Definition 6.29 (upward computation). A function h′ : ZF → B, which is a path-
based computation of a function h : µF → A, is said to be upward if there exist an
operator (⊕) : (∂FA×B) → B and a value e ∈ B such that the following equation
holds.

h′ = foldr⊕,e ◦ map∂Fh

As the same as the case of node-valued binary trees, we consider recursive division
on one-hole contexts to characterize scalable divide-and-conquer parallel programs.
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Definition 6.30 (decomposition). A decomposition of a function h : µF → A is
a tuple (φ,⊙,⊖) that consists of a function φ : ∂FA→ B, an associative operator
⊙:(B ×B) → B, and an operator ⊖:(B × µF) → A such that the following equation
holds for all t ∈ leavesµF.

h(z ⊳ t) = hom⊙,φ◦∂Fh(z) ⊖ t

Theorem 6.31. If (φ,⊙,⊖) is a decomposition of a function h and all of φ, ⊙, and
⊖ are constant-time computations, then h can be evaluated for a tree of n nodes in
O(n/p+ log p) time on an EREW PRAM with p processors.

Proof. It is not difficult to confirm that h satisfies the premise of Theorem 6.25.

It is worth remarking that since decomposition of a function implies the premise
of Theorem 6.25, decomposable function can be evaluated in a divide-and-conquer
manner based on the m-bridge technique.

Since a decomposition is characterize by a list homomorphism, we can utilize
parallelization methods on lists for free. For instance, “the third list-homomorphism
theorem” on trees is a direct consequence of that on lists.

Lemma 6.32. Assume that a function h′, which is a path-based computation of h
satisfying h(z⊳t) = h′(z)⊖t holds for all t ∈ leavesµF, is both downward and upward;
then, there exists a decomposition (φ,⊙,⊖) of h such that φ(∂Fh(a)) = h′([a]) and
a⊙ b = h′(h′◦(a) ++ h′◦(b)) hold.

Proof. Since h′ is both leftward and rightward, ⊙ is associative and h′ = hom⊙,φ◦∂Fh

holds from Lemma 6.3. Therefore, (φ,⊙,⊖) forms a decomposition of h.

Theorem 6.33 (the third list-homomorphism theorem on polynomial data struc-
tures). A function h : µF → A is decomposable if and only if there exist three op-
erators (⊕) : (∂FA×B) → B, (⊗) : (B × ∂FA) → B, and (⊖) : (B × µF) → A, such
that the following equations hold for all t ∈ leavesµF.

h(z ⊳ t) = foldr⊕,e(map∂Fh(z)) ⊖ t
= foldl⊗,e(map∂Fh(z)) ⊖ t

Proof. The “if” part is a direct consequence of Lemma 6.32, and the “only if” part
is straightforward.

As the final remark, we show that any bottom-up computations are decompos-
able, if we neglect efficiency.

Lemma 6.34. Assume that a function h :µF → A satisfies the following properties.

h(t) = h(t′) ⇒ h(z ⊳ t) = h(z ⊳ t′)
map∂Fh(x) = map∂Fh(y) ⇒ h(x ⊳ t) = h(y ⊳ t)

Then, h is decomposable.
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Proof. Let ⊙ be ++, and define φ and ⊖ by φ = ∂Fh• and z⊖t = h(z ⊳t). Then, ⊙ is
associative; besides, map∂Fh◦hom⊙,φ◦∂Fh = map∂Fh◦φ◦∂Fh = map∂Fh holds. Therefore,
h(z ⊳ t) = hom⊙,φ◦∂Fh(z) ⊖ t holds.

The result shown in Lemma 6.34 is useless in practice, because derived program
does almost nothing on zippers. Thus it is necessary to specify the computation on
zippers, or at least, the type of result of computation on zippers. The third list-
homomorphism theorem enables us to obtain parallel computations having specified
types, and thus, we can exclude such useless cases.

6.4 Summary and Discussions

In this section, we have developed a framework for systematic construction of cost
optimal divide-and-conquer parallel programs on polynomial data structures. We
have introduced parallel tree contraction algorithms that are useful for developing
cost-optimal parallel algorithms, shown sufficient conditions to apply the algorithms,
and proved “the third list-homomorphism theorems” that enable us to develop pro-
grams satisfying the conditions in a systematic manner. Our theorem is exactly a
generalization of the original theorem on lists, and our results build on list homomor-
phisms. Therefore, existing automatic parallelization methods will be applicable.

We have focused on the third list-homomorphism theorem [Gib96]. While the
third list-homomorphism theorem is a folk theorem in the calculational programming
community, its effectiveness has not been discussed well. We have shown deriva-
tions of parallel programs based on right inverses, and confirmed that the third
list-homomorphism theorem is certainly useful for developing parallel programs.
While the use of right inverses is not our new invention, because Gibbons [Gib96]
also showed a right-inverse-based derivation, intensive study about the use of right
inverses in calculations is our contribution.

The third list-homomorphism theorem requires two sequential programs, while
usual parallelization methods generate a parallel program from a sequential program.
Even though this requirement seems a shortcoming, it is a strong point in truth. In
general, there is little hope that we can obtain a parallel program from a sequen-
tial program, because parallel programs will be more complicated than sequential
programs. In other words, extra information is necessary to develop parallel pro-
grams from sequential ones. What the third list-homomorphism theorems provide
is a systematic way to reveal such extra information.

After confirmed usefulness of the third list-homomorphism theorem, we have
tried to generalize the results on lists to trees. Such generalization has been dis-
cussed in the framework of skeletal parallel programming, in which parallel pro-
grams are developed by combining ready-made parallel computation patterns called
skeletons. Skillicorn and Gibbons [Ski96, GCS94] introduced parallel tree skele-
tons and proposed their implementation based on parallel tree contraction. Mat-
suzaki et al. [MHT03,MHT06,Mat07b] did intensive studies on this topic, and im-
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plemented parallel tree skeletons in skeleton-based parallel programming library
SkeTo [MIEH06]. Although parallel skeletons are useful for parallel programming,
their drawback is the requirement for operators that we plug skeletons with. Be-
cause parallel tree skeletons are implemented based on tree-contraction algorithms,
operators used by skeletons should satisfy certain conditions, such as the premise of
Theorem 6.7, and it is a duty of users to guarantee the conditions. Our “the third
list-homomorphism theorem” on trees enables us to develop operators satisfying the
conditions in a systematic way. It is worth remarking that the conditions required
for parallel tree skeletons [MHT03,Mat07b] are equivalent to the condition required
for decompositions, while formalizations differ a bit.

On developing “the third list-homomorphism theorem” on trees, we focused on
paths so as to utilize the known theories on lists. Then, we noticed the relation-
ship between paths and one-hole contexts, and found that Huet’s zippers [Hue97]
led to understandable programs that dealt with one-hole contexts. The notion of
one-hole contexts establishes a link between parallel tree contraction and the third
list-homomorphism theorem, because it is also the key to parallel tree contraction
algorithms.

As seen, our parallel programming framework relies on parallel tree contrac-
tion algorithms. Parallel tree contraction, which was first proposed by Miller and
Reif [MR85], is known to be a useful framework to develop cost-optimal parallel
programs on trees, and many computations have been implemented on it [CV88,
GR89, ADKP89, Ski96, GCS94, MHT03, Mat07b]. While there are several efficient
parallel tree contraction algorithms on binary trees [CV88,GR89,ADKP89,MW97],
few studies consider parallel tree contraction algorithms on non-binary trees without
binary-tree encoding. While the parallel tree contraction algorithm by Miller and
Reif [MR85] works for non-binary trees, it requires concurrent-read/concurrent-write
PRAM. In [Rei93], a cost-optimal tree contraction algorithm on EREW PRAM is
shown, which is an extension of that by Miller and Reif. Our new tree contraction
algorithm is simpler than the algorithm and suitable for practical use.

Because few practical tree contraction algorithms are known for non-binary
trees, existing parallel tree skeletons only deal with binary trees. Matsuzaki et
al. [MHKT05,KME07,Mat07b] proposed parallel tree skeletons on non-binary trees,
which are implemented based on a binary-tree encoding. They required a condi-
tion on operators for skeletons, called extended distributivity, as a requirement of
a successful parallel implementation on the binary-tree encoding. The premise of
Theorem 6.25 is simpler and more understandable than theirs.

We have shown that our results can be scaled up to polynomial data structures,
which correspond to trees of bounded degrees. Regular data structures are a general-
ization of polynomial data structures, and include trees of unbounded degrees. Since
McBride [McB01] showed a systematic derivation of zipper structures for regular
data structures, it is not a problem to formalize path-based computations, down-
ward computations, and upward computations on regular data structures based on
their zipper structures. However, it is difficult to construct cost-optimal parallel tree
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contraction algorithm without binary-tree encoding on regular data structures. In
this chapter, we have required that the operation to merge results of siblings can be
done in O(1) time, and this requirement is not realistic on regular data structures.
Therefore, it is necessary to parallelize this merging operation. In summary, it is an
interesting future work to give “the third list-homomorphism theorem” on regular
data structures.

We have considered list homomorphisms not only on lists but also trees, and
confirmed that list homomorphisms provide a good abstraction for efficient paral-
lel programs. However, when we consider parallelization of a large program, we
would like to parallelize the whole of the program, because a small sequential part
in the program will be a bottleneck when a large number of processors are avail-
able. Therefore, expressiveness is a very important issue for parallel programming
frameworks. From this viewpoint, effectiveness of list homomorphisms for large and
practical examples is still disputable.



Chapter 7

Automatic Parallelization on the

Third List-Homomorphism

Theorem

In Chapter 6, we have developed theories for parallel programming. Associativity
enables us to divide a structure at its middle, and the third list-homomorphism
theorem helps to obtain associative operators. We have shown some calculations to
derive parallel programs; however, our derivations have been handiwork so far.

The goal of this chapter is to establish automatic parallelization methods based
on the third list-homomorphism theorem. We design a programming language to
describe sequential programs that are objects of parallelization, and introduce two
automatic parallelization methods. One [MMM+07, Mor07] is based on program
inversion. Following Lemma 6.3, we derive an associative operator by generating a
right inverse of a function. The other [MMHT08b] is based on generate-and-testing
method. We generate candidates of parallel programs, and find a program that
is certainly a list homomorphism. In both methods, automatic theorem proving
techniques play an important role. We use quantifier elimination [CJ98] techniques
to achieve automatic theorem proving.

7.1 Brief Introduction of Quantifier Elimination

In this chapter, we will make use of quantifier elimination [CJ98] techniques. Here
we briefly introduce them.

Given a quantified formula, for example ∀x : ax2 + bx+ c > 0, quantifier elimi-
nation techniques calculate an equivalent formula containing no quantifier, such as
(a = b = 0 ∧ c > 0) ∨ (a > 0 ∧ b2 − 4ac < 0). Quantifier elimination techniques are
useful for automatic theorem proving, because a quantifier-free formula is easy to
give a proof or disproof.

This chapter corresponds to combination of [MMM+07] and [MMHT08b].
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Here, we only consider elementary theories of real closed fields, that is, each
predicate is an equation/inequality of polynomial expressions, and each variable
ranges over R. Tarski [Tar51] proved that elementary theories of real closed fields is
decidable by providing a quantifier elimination procedure. Collins [Col75] proposed a
more efficient procedure, called cylindrical algebraic decomposition, which is actually
available in some of existing computer algebra systems.

While cylindrical algebraic decomposition is effective, it is a complicated proce-
dure and very costly. We will consider a simpler case, in which each predicate is
inequality of linear expressions. For such cases, efficient procedures are known. We
introduce two procedures: Fourier-Motzkin elimination [DE73] and the method by
Loos and Weispfenning [LW93].

Fourier-Motzkin elimination procedure is the following. We consider elimination
of a universal quantifier, and the case of an existential quantifier is its dual. First,
translate the formula into its conjunctive normal form; then, because of the distribu-
tivity of universal quantifiers over conjunctions, namely ∀x :

∧
i ei ⇔

∧
i(∀x : ei),

it is sufficient to consider elimination of a universal quantifier for disjunctions of
inequalities. We can eliminate a quantifier as follows, where ap, aq, ar, and as are
positive numbers.

∀x : (
∨

p

apx+ bp ≤ 0) ∨ (
∨

q

aqx+ bq < 0) ∨ (
∨

r

arx+ br ≥ 0) ∨ (
∨

s

asx+ bs > 0)

= (
∨

p,r

arbp ≤ apbr) ∨ (
∨

q,r

arbq ≤ aqbr) ∨ (
∨

p,s

asbp ≤ apbs) ∨ (
∨

q,s

asbq < aqbs)

Fourier-Motzkin elimination is practically efficient if transformations into the
normal forms are not costly. However, in worst cases, it is terribly inefficient. For
example, if we need to eliminate alternating universal and existential quantifiers, the
size of the formula increases exponentially in every elimination step. Similarly, it is
impractical to extend the procedure so that it can deal with nonlinear expressions,
because a few case analyses cause an exponential increase of the size of the formula.

Another efficient procedure for linear inequalities is the method proposed by Loos
and Weispfenning [Wei88, LW93]. The method is based on the idea to enumerate
all test cases such that the formula is true if and if and only if all test cases yields
true. The key idea of the method is summarized as the following lemma.

Theorem 7.1 ([Wei88,LW93]). Let ϕ be a quantifier-free linear formula containing
no negation, let x be a linear variable in ϕ, and define sets I and J by I = {(a, b) |
(ax = b) ∈ ϕ ∨ (ax ≤ b) ∈ ϕ} and J = {(a, b) | (ax < b) ∈ ϕ ∨ (ax 6= b) ∈ ϕ}. Then,
∀x : ϕ is equivalent to

∧
s∈S ϕ[s/x], where the set S is defined as follows.

S = {
b

a
| (a, b) ∈ J} ∪ {

b

a
± 1 | (a, b) ∈ I}

∪ {
1

2
(
bi
ai

+
bj
aj

) | (ai, bi), (aj, bj) ∈ I ∧ i 6= j}



7.2. Designing a Language for Automatic Parallelization 139

prog ::= decl · · · decl { program }
decl ::= f([a]) = e; f([a] ++ x) = e; f(x++ [a]) = e; { function definition }
e ::= c | a | f(x) | e⊘ e | if p then e else e { expression }
⊘ ::= + | − | × | ↑ | ↓ { arithmetic operator }
p ::= p ∧ p | p ∨ p | ¬p | e < e | e = e | e ≤ e | e 6= e { predicate }

Figure 7.1. The syntax of the language used for our automatic parallelization, where
c denotes a constant real value and a denotes a real-valued variable.

The set S above corresponds to the test cases. Notice that a linear formula
represents intervals, and a universal quantifier requires that the union of intervals
covers the entire of R. The test cases are generated so that each possibly non-
covered interval contains at least one test case. Loos and Weispfenning [LW93]
showed improvements that yield smaller set of test cases, by using case analyses and
additional symbols, namely infinity and infinitesimal.

One good thing of Theorem 7.1 is that it does not requires any formula of the
specific form. Therefore, this method can be used to deal with nonlinear cases, if
there are no squares of the same variable. For example, when we will eliminate
∀x, we regard all variables except x as a constant value, and apply the procedure
shown in Theorem 7.1. The procedure usually requires some information about
coefficients, e.g., b/a is nonsense if a is 0; instead of the information, we add case
analyses expressed by formulae. Such case analyses are not too costly, which is a
good point of Theorem 7.1. Note that the procedure cannot deal with all of nonlinear
formulae even if the formulae have no square of the same variable, because square
of the same variable may occur as a result of an elimination step.

7.2 Designing a Language for Automatic Paral-

lelization

Well, let us design a language to describe the inputs of automatic parallelization
methods. Here, we only consider parallelization of functions that compute values
from lists.

As mentioned, the important requirements for the language are effectiveness and
expressiveness. For effective parallelization, we would like to make use of the third
list-homomorphism theorem and automatic theorem proving techniques. To utilize
the third list-homomorphism theorem, we require users to write both of leftward and
rightward programs. There are many studies about automatic theorem proving, and
we adopt quantifier elimination techniques. Quantifier elimination techniques are
good at dealing with numerical computations, which appear at many practical ap-
plications of parallel programming, such as data mining and simulation. Therefore,
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use of quantifier elimination also improves expressiveness. In addition, quantifier
elimination is based on usual inequalities, which is intuitive even for nonspecialists
and useful for encoding practical computations.

In summary, Figure 7.1 shows the syntax of our language for describing the input
of automatic parallelization systems. The program is a set of recursive functions,
each of which consists of leftward and rightward definitions. For defining the func-
tion, we can use constant values, variables, function calls, conditional expressions,
and arithmetic operations including addition, subtraction, multiplication, minimum,
and maximum. The conditions are equalities or inequalities between expressions.
Use of divisions is prohibited for avoiding worrying about treatment of division by
zero. In theory, there is no problem to add divisions to our language.

7.3 Parallelization via Inversion

Morita et al. [MMM+07,Mor07] proposed a parallelization method based on auto-
matic inversion of programs. The method is based on Lemma 6.3. We first derive
a right inverse of the function that is the object of parallelization, and obtain an
associative operator from the right inverse. The difficulty is how to obtain a right
inverse. Obtaining a right inverse (we will call it right inversion) is nontrivial even
on our restricted language in Figure 7.1. Moreover, there are few studies for auto-
matic right inversion, while there are many studies for automatic inversion, and we
need to construct a new method.

7.3.1 Automatic Derivation of Right Inverses

Before introducing the automatic right inversion method by Morita et al., let us
specify problems for providing a right inversion method. In our language, conditional
expressions and recursions are the main difficulty for right inversion. To obtain an
inverse of a conditional expression, we need to provide an appropriate way to decide
which branch should be chosen in an inverse computation. In usual, such decisions
require a lot of information of the program. However, it is difficult to extract
accurate information from recursive functions.

The key idea of the method is to give up to deal with these difficulties. First of
all, we only consider right inverse functions that are not recursive. In other words,
we only consider right inverse functions that result in lists of length at most constant.
This assumption is also effective to obtain efficient parallel programs, because, as
seen in Lemma 6.3, the derived parallel program should do computations on the
list generated from the right inverse. However, because of this assumption, some
functions are excluded from the domain of the method. For example, it cannot derive
a parallel program of the function length that returns the length of the list inputted.
As similar to recursions, we do not try to deal with conditionals. Instead of choosing
appropriate branches for conditionals, we just derive inverses of all branches, and
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after that, we remove unnecessary branches.

Now let us introduce the automatic right inversion method. The method consists
of three steps: inversion, verification, and improvements. We explain these three
steps with an example, the function mis that computes maximum initial-segment
sum. As seen in Section 6.1.3, the function mis can be parallelized by tupling it with
the summation function sum, and thus, our objective is to derive a right inverse of
the following function ms .

ms([ ]) = 0
ms([a] ++ x) = let (i, s) = ms(x) in (0 ↑ (a+ i), a+ s)

The first and second components of ms respectively retain the maximum initial-
segment sum and the summation of the list.

Inversion

We first assume that the right inverse of ms , denoted by ms•, results in a list
containing two elements. There is no serious reason for this assumption—we can
try to obtain another right inverse, which may results in a list of three elements.
Note that if this assumption is not appropriate, the derived right inverse is incorrect.
Later we will confirm its correctness in the verification step.

From the definition of right inverses and the assumption, we have the following
formula.

ms(x) = (i, s) ⇒ (ms•(i, s) = [a, b] ⇒ ms([a, b]) = (i, s))

We calculate as follows.

ms([a, b]) = (i, s)
⇔ { definition of ms }

(0 ↑ a ↑ (a+ b), a+ b) = (i, s)
⇔ { equality on tuples }

0 ↑ a ↑ (a+ b) = i ∧ a+ b = s
⇔ { hoisting conditionals }

(0 ≥ a ∧ 0 ≥ a+ b ∧ 0 = i ∧ a+ b = s) ∨
(a ≥ 0 ∧ a ≥ a+ b ∧ a = i ∧ a+ b = s) ∨
(a+ b ≥ 0 ∧ a+ b ≥ a ∧ a+ b = i ∧ a+ b = s)

⇔ { solving the equations }
(0 ≥ a ∧ 0 ≥ s ∧ i = 0 ∧ a+ b = s) ∨
(i ≥ 0 ∧ i ≥ s ∧ a = i ∧ b = s− i) ∨
(s ≥ 0 ∧ b ≥ 0 ∧ i = s ∧ a+ b = s)

⇐ { fixing values of some of variables (we use zero in this case) }
(0 ≥ s ∧ i = 0 ∧ a = 0 ∧ b = s) ∨
(i ≥ 0 ∧ i ≥ s ∧ a = i ∧ b = s− i) ∨
(s ≥ 0 ∧ i = s ∧ a = s ∧ b = 0)
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This calculation have derived a sufficient condition that [a, b] obtained from (i, s)
satisfies the necessary condition of the output of right inverses, ms([a, b]) = (i, s).
Therefore, the following function is a candidate of a right inverse.

ms•(i, s) = if 0 ≥ s ∧ i = 0 then [0, s]
else if i ≥ 0 ∧ i ≥ s then [i, s− i]
else if s ≥ 0 ∧ i = s then [s, 0]

Notice that the function ms•(i, s) is a partial function (besides, this definition is
not in the language in Figure 7.1). As the previous calculation proves, the function
ms•(i, s) works as a right inverse of ms for inputs that are in its domain. How-
ever, because of its partiality, it may not a right inverse of ms . We will verify its
correctness at the next step.

It is worth remarking that the “hoisting conditionals” step is the key step of the
calculation. In that step, we eliminate the maximum operations, which is essentially
conditional expressions, by pushing it as a precondition of equations; then, since the
rest parts are written in usual arithmetic operations such as + and ×, it is easy to
solve them.

Verification

Next, we would like to verify that the derived candidate is a right inverse. It is
sufficient to confirm that the domain of the candidate covers the range of the original
function. Here, we use the following lemma [Mor07].

Lemma 7.2 ([Mor07]). Assume that a function f is defined as follows:

f([ ]) = e
f([a] ++ x) = a⊘ f(x)

Then, given a predicate p, x ∈ ran(f) ⇒ p(x) holds if p(e)∧ (p(r) ⇒ p(a⊘r)) holds.

Proof. It is straightforward from induction on lists.

Let us confirm the correctness of ms• we have derived. What we would like
to prove is the inequality ran(ms) ⊆ dom(ms•), and here, dom(ms•) is {(i, s) |
(0 ≥ s ∧ i = 0) ∨ (i ≥ 0 ∧ i ≥ s) ∨ (s ≥ 0 ∧ i = s)}. First, it is apparent that the
following formula holds.

ms([ ]) = (0, 0) ∈ {(i, s) | (0 ≥ s ∧ i = 0) ∨ (i ≥ 0 ∧ i ≥ s) ∨ (s ≥ 0 ∧ i = s)}

Next, from the definition of ms , what we would like to prove is the following formula.

∀i, s, a : ((0 ≥ s ∧ i = 0) ∨ (i ≥ 0 ∧ i ≥ s) ∨ (s ≥ 0 ∧ i = s)) ⇒
((0 ↑ (a+ i), a+ s) ∈ {(i, s) | (0 ≥ s ∧ i = 0) ∨ (i ≥ 0 ∧ i ≥ s) ∨ (s ≥ 0 ∧ i = s)})

This can be seen as a first order formula on linear inequalities. Thus, the quantifier
elimination techniques enable us to prove or disprove it. In this case, this formula
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certainly holds. Therefore, ran(ms) ⊆ dom(ms•) holds from Lemma 7.2, which
implies the correctness of ms•.

The key is the use of quantifier elimination. By the virtue of the design of our
language, all of the formulae we would like to prove/disprove are first order formulae
on polynomial inequalities. Thus, quantifier elimination works as a mighty method.

When we fail in the verification, the only way we can do is to consider candidates
of right inverses that yield longer lists than those we have considered. For example,
assume that we had failed to verify ms•. Then, since we have considered a function
that yields lists of length two, we might be able to obtain a right inverse of ms
by considering functions that yield lists of length three. However, such an iterative
procedure will not terminate for functions whose outputs strongly depend on the
length of its inputs, such as length.

Improving Efficiency

So far, we have shown a way to obtain a correct right inverse. However, obtained
right inverses are inefficient in general, because it may have a lot of conditional
branches. We have adopted a naive strategy for dealing with branches, and much
of them may be unnecessary.

Recall the definition of ms•, which has three branches: the case of 0 ≥ s∧ i = 0,
the case of i ≥ 0 ∧ i ≥ s, and the case of s ≥ 0 ∧ i = s. We can observe the second
branch is the most generic one in the sense that both of (0 ≥ s ∧ i = 0) ⇒ (i ≥
0 ∧ i ≥ s) and (s ≥ 0 ∧ i = s) ⇒ (i ≥ 0 ∧ i ≥ s) hold. Thus, the second branch
suffices to give a correct right inverse, and we obtain the following right inverse,
which is more efficient than the previous one.

ms•(i, s) = if i ≥ 0 ∧ i ≥ s then [i, s− i]

The right inverse above is exactly the one that we have considered in Section 6.1.3.
Now let us formalize this improvement. Given a set of formula {ϕ1, ϕ2, . . . , ϕn},

where each ϕi stands for the precondition of the ith branch, ith branch is unnecessary
if the following property hold.

ϕi ⇒ (
∨

1≤j≤n∧ i6=j

ϕj)

Again, this formula can be proved or disproved by quantifier elimination techniques
on our language.

7.3.2 Strong Points and Drawbacks

One of the most good characteristics of this method is that it is semantic approach
in the sense the derivation scarcely depends on the syntactic representation of the
function. Thus, it is unnecessary for users to be careful for writing programs. An-
other good characteristic is that this method is suitable for semi-automatic, namely
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interactive, derivation. Even when users think of a candidate of right inverse, it is
not trivial to prove its correctness. As seen, automatic theorem proving techniques
are effective to verify that a candidate is a right inverse; besides, we have also shown
automatic improvement methods.

One of the most critical drawbacks of this method is lack of capability of dealing
with functions whose right inverses do not yield lists of length at most constant,
which exclude functions like length. This restriction makes the coverage of this
method small. Another issue is the efficiency of derived operators. As mentioned,
naive derivations yield inefficient right inverses; besides, there is no guarantee that
the inefficiency is completely removed by the improvement method proposed. More-
over, as mentioned in Section 6.1.3, even if an efficient right inverse is obtained, it
is not easy to obtain an efficient associative operator from Lemma 6.3.

7.4 Parallelization via Candidate Generation and

Associativity Testing

Next we would like to introduce another method for automatic parallelization, which
consists of two steps. One is a generation of candidates of associative operators, and
the other is the verification of associativity of candidates. More formally, given a
function f , these two steps are summarized as follows.

1. Enumerate operators ⊙ such that f([a] ++ x) = f([a]) ⊙ f(x) holds.

2. Prove that a candidate ⊙ satisfies f(x++ y) = f(x) ⊙ f(y).

This method is hopeless at a glance, because of the following two reasons. First,
there will be too many candidates ⊙ that satisfy the requirement f([a] ++ x) =
f([a]) ⊙ f(x). Second, there might exist no operator ⊙ that satisfies f(x ++ y) =
f(x)⊙f(y). These two observations imply that naive implementation will be useless.
Here is the place that the third list-homomorphism theorem takes its role. Based on
the third list-homomorphism theorem, we can guarantee the existence of an operator
⊙ satisfying f(x++ y) = f(x)⊙ f(y); then, we would able to find the operator only
by considering a rather small number of candidates.

In the following, we explain the method by using the function mis as an example.
For simplicity, we do not consider the empty list as an initial segment, and thus, the
input for the parallelization procedure is the following.

mis([a]) = a
mis([a] ++ x) = a ↑ (a+ mis(x))
mis(x++ [a]) = mis(x) ↑ (sum(x) + a)
sum([a]) = a
sum([a] ++ x) = a+ sum(x)
sum(x++ [a]) = sum(x) + a
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The input is written in our language in Figure 7.1, and it consists of a set of functions
(mis and sum in this example) that are written in both leftward and rightward
manners.

In the following, we will write (f1 △ f2 △ · · · △ fk) to denote a function such that
(f1 △ f2 △ · · · △ fk)(x) = (f1(x), f2(x), . . . , fk(x)) holds.

7.4.1 Generating Candidates and Testing Associativity

Preprocessing

Given a set of functions F = {f1, f2, . . . , fn}, we would like to obtain an operator ⊙
such that (f1 △f2 △ · · ·△fn)(x++y) = (f1 △f2 △ · · ·△fn)(x)⊙(f1 △f2 △ · · ·△fn)(y) holds.
Our strategy is to parallelize subsets of F from smaller ones to larger ones, so that
we can reduce the number of candidates considered. For this purpose, we compute a
sequence [F1, F2, . . . , Fm] such that the following four properties hold: (i) Fi ⊆ F ; (ii)
Fm = F ; (iii) i < j ⇒ Fi 6⊇ Fj; (iv) for each Fi = {fi1, fi2, . . . , fik}, (fi1△fi2△· · ·△fik)
is both leftward and rightward. Note that the fourth property implies that each Fi

is parallelizable. For example, from the set of functions {mis , sum}, we generate a
sequence [{sum}, {mis , sum}].

After the preprocessing, we perform the following two steps, namely candidate
generation and associativity testing, for each Fi from i = 1 to i = m. Throughout
the process, each function have a flag that stands for whether the function has been
parallelized, and each parallelized function fi has an expression e⋆

fi
as the result of

parallelization.

Candidate Generation

For each function fi in the given set {f1, f2, . . . , fk}, let efi
= e⋆

fi
if fi has been paral-

lelized before, and otherwise, generate an expression efi
that contains no variables a

and y and satisfies the following equation, where Lf1
, . . . , Lfk

, Rf1
, . . . , Rfk

are fresh
variables.

fi([a] ++ y) = efi
[f1([a])/Lf1

, . . . , fk([a])/Lfk
, f1(y)/Rf1

, . . . , fk(y)/Rfk
]

Then, a set of expressions {ef1
, ef2

, . . . , efk
} is the candidate that is processed by

the next step, the associativity testing.

As an example, let us consider the case where the input of this step is {mis , sum}.
In this situation, sum has been parallelized and an expression e⋆

sum = Lsum + Rsum

has been obtained. The function mis has not been parallelized yet, and we may
generate emis = Lmis ↑ (Lsum + Rmis) for mis , because mis([a] ++ x) = mis([a]) ↑
(sum([a]) + mis(x)) holds. Then, {e⋆

sum , emis} is a candidate and will be processed
at the next step.
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Associativity Testing

Given a candidate {ef1
, ef2

, . . . , efk
}, try to prove the following formula.

∀efi
∈ {ef1

, ef2
, . . . , efk

} :
fi(x++ y) = efi

[f1(x)/Lf1
, . . . , fk(x)/Lfk

, f1(y)/Rf1
, . . . , fk(y)/Rfk

]

It is unnecessary to prove the formula about efi
when fi has been parallelized.

If we successfully proved the formula, then let e⋆
fi

= efi
for each fi; in other

words, fi is parallelized. Otherwise, return to the candidate generation step. The
parallelization ends in failure when the formula does not hold for all considerable
candidates.

The formula certainly holds for a candidate {e⋆
sum , emis} where e⋆

sum = Lsum+Rsum

and emis = Lmis ↑ (Lsum + Rmis). Thus, e⋆
mis = Lmis ↑ (Lsum + Rmis) and mis is

successfully parallelized.

Output

Given a set of functions {f1, . . . , fn} and corresponding expressions e⋆
f1
, . . . , e⋆

fn
, out-

put the following operator ⊙.

(Lf1
, . . . , Lfk

) ⊙ (Rf1
, . . . , Rfk

) = (e⋆
f1
, . . . , e⋆

fk
)

The associativity testing proves that the operator satisfies the following equation.

(f1 △ f2 △ · · · △ fn)(x++ y) = (f1 △ f2 △ · · · △ fn)(x) ⊙ (f1 △ f2 △ · · · △ fn)(y)

For the case of mis , the following operator is outputted.

(Lsum , Lmis) ⊙ (Rsum , Rmis) = (Lsum +Rsum , Lmis ↑ (Lsum +Rmis))

This operator is certainly the operator that we have derived several times.

Characteristics

One of the characteristics of this method is that it is based on candidate generation
and associativity testing. Therefore, the way to manage these two steps is the issue
to perform effective parallelization.

For generating candidates, it seems appropriate to generate only expressions of
low computational cost, because costly computations are unnecessary for parallel
computations. Another interesting strategy to generate candidates is use of other
automatic parallelization methods: we use the result of an automatic parallelization
method as a candidate. Then, this method can be recognized as a method to
compose automatic parallelization methods and verify their results.

For associativity testing, use of automatic theorem proving techniques is a nat-
ural way. There are a lot of studies about automatic theorem proving, and we can
choose appropriate one according to our objectives.
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Figure 7.2. The dependency graph of the functions mis and sum.

7.4.2 Implementation

Following the previous subsection, we implemented the method as an automatic
parallelization system. The system is written in Haskell [Pey03].

Preprocessing

As a preprocessing, we would like to obtain the subset of the inputted functions
such that the subset is parallelizable. For this purpose, we consider a graph whose
vertexes and edges are respectively functions and caller-callee dependencies between
functions, and apply strongly connected component decomposition and topological
sorting to the graph.

Figure 7.2 shows the graph corresponding to the set of functions {mis , sum}.
Since mis calls sum in its rightward definition, there is an edge from sum to mis .
Then, strongly connected component decomposition yields two strongly connected
components, {sum} and {mis}, and topological sorting on strongly connected com-
ponents yields an ordering [{sum}, {mis}]. Therefore, we first parallelize sum, and
after that, we parallelize {mis} by using the information of {sum}.

Candidate Generation

In our implementation, the system generates candidates by replacing subexpressions
of by base-case definition. Let us see the candidate generation strategy through
an example. Since both mis([a]) and sum([a]) yields a, replacing an expression a
by mis([a]) or sum([a]) does not change the value of expressions. Hence, from the
equation that defines the step case of mis , namely mis([a]++x) = a ↑ (a+mis(x)), we
can obtain the following nine equations by considering three cases for each occurrence
of a: replacing it by mis([a]), replacing it by sum([a]), and leaving it unchanged.

mis([a] ++ x) = a ↑ (a+ mis(x))
mis([a] ++ x) = a ↑ (mis([a]) + mis(x))
mis([a] ++ x) = a ↑ (sum([a]) + mis(x))
mis([a] ++ x) = mis([a]) ↑ (a+ mis(x))
mis([a] ++ x) = sum([a]) ↑ (a+ mis(x))
mis([a] ++ x) = mis([a]) ↑ (mis([a]) + mis(x))
mis([a] ++ x) = mis([a]) ↑ (sum([a]) + mis(x))
mis([a] ++ x) = sum([a]) ↑ (mis([a]) + mis(x))
mis([a] ++ x) = sum([a]) ↑ (sum([a]) + mis(x))

Since equations that contain a as their direct subexpressions are useless as can-
didates, we throw away them; then four expressions are left. The candidates are
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expressions that is obtained from the right hand side expressions of the four equa-
tions by replacing occurrences of function calls by corresponding variables: replacing
mis([a]) by Lmis , sum([a]) by Lsum , mis(x) by Rmis , and sum(x) by Rsum . In sum-
mary, we obtain the following four candidates for mis .

Lmis ↑ (Lmis +Rmis)
Lmis ↑ (Lsum +Rmis)
Lsum ↑ (Lmis +Rmis)
Lsum ↑ (Lsum +Rmis)

Associativity Testing

For associativity testing, we use induction on lists and quantifier elimination tech-
niques.

Let us consider the case where the candidate is {emis , e
⋆
sum}, which we have

considered in the previous section. We would like to prove the following equation.

mis(x++ y) = mis(x) ↑ (sum(x) + mis(y))

The equation holds when the length of x is 1, which is a direct consequence
of the candidate generation step. When the length of x is longer than 1, namely
x = [a] ++ z, we calculate as follows.

mis([a] ++ z ++ y) = mis([a] ++ z) ↑ (sum([a] ++ z) + mis(y))
⇔ { definition of mis }

a ↑ (a+ mis(z ++ y)) = mis([a] ++ z) ↑ (sum([a] ++ z) + mis(y))
⇔ { induction hypothesis }

a ↑ (a+ (mis(z) ↑ (sum(z) + mis(y))))
= mis([a] ++ z) ↑ (sum([a] ++ z) + mis(y))

⇔ { definitions of mis and sum }
a ↑ (a+ (mis(z) ↑ (sum(z) + mis(y))))

= (a ↑ (a+ mis(z))) ↑ ((a+ sum(z)) + mis(y))

In summary, we would like to prove the last equation holds for all a, z, and y. To
prove this is not easy, because we need to infer results of recursive functions. Instead
of proving the last equation, we assume that each function call will yield arbitrary
values and try to prove the following equation.

∀a, Lmis , Lsum , Rmis :
a ↑ (a+ (Lmis ↑ (Lsum +Rmis))) = (a ↑ (a+ Lmis)) ↑ ((a+ Lsum) +Rmis)

We can prove/disprove this equation by quantifier elimination techniques.
We implemented two quantifier elimination techniques: Fourier-Motzkin elimi-

nation [DE73] and the method by Loos and Weispfenning [LW93]. Because Fourier-
Motzkin elimination is terribly inefficient for nonlinear expressions, the implemen-
tation of Fourier-Motzkin elimination specializes in the linear case. It is efficient for
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struct my_tuple_t {

int mis, sum;

my_tuple_t(int mis, int sum) : mis(mis), sum(sum){}

my_tuple_t(){}

};

struct func_t : public sketo::functions::base<my_tuple_t(int)> {

my_tuple_t operator()(const int a) const {

const int mis = a;

const int sum = a;

return my_tuple_t(mis, sum);

}

} func;

struct odot_t : public sketo::functions::base

<my_tuple_t(my_tuple_t,my_tuple_t)> {

my_tuple_t operator()(const my_tuple_t &x, const my_tuple_t &y) const {

const int mis = std::max(x.mis,(x.sum+y.mis));

const int sum = (x.sum+y.sum);

return my_tuple_t(mis, sum);

}

} odot;

Figure 7.3. The output that the parallelizer generates for mis .

this case because we only eliminate universal quantifiers and elimination of universal
quantifiers does not breaks disjunctive normal forms. In addition, simplification of
formula is effective in practice [DS97], and we implement the following three simpli-
fications: flattering expressions, common subexpressions elimination, and evaluation
of subexpressions whose values are fixed.

We implemented the associativity testing step as a parallel program, because the
associativity testing for each candidate is independent. It is a strong point of the
method that it is suitable for parallel implementation.

Output

The output of the system is C++ codes that is available form parallel skeleton
library SkeTo [MIEH06] of developers’ version.

Figure 7.3 is the output for mis . The output consists of a function func_t for
singleton lists, an associative operator odot_t for merging results of sublists, and a
structure my_tuple_t for communications between processors.

Strong Points and Drawbacks

One of the good characteristics of this implementation is efficiency of generated
parallel programs: each generated program is efficient in the sense the merging
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Table 7.1. The number of candidates generated for each problem.
length max mis mip mss atoi

number of candidates 2 1 5 730 24 3

Table 7.2. The computational times for parallelization (unit: second)
length max mis mss mip atoi

Fourier-Motzkin elimination 0.01 0.01 0.01 0.04 N/a N/a
method by Loos and Weispfenning 0.01 0.01 0.01 5.25 N/a 0.01

operator is less costly than sequential ones because of our candidate generation
strategy. Thus, it is unnecessary to develop neat efficiency improvement methods
for this implementation.

The drawback of this implementation is that it is fully syntactic: Success in
parallelization highly depends on the syntactic representation of programs. More-
over, it may be necessary for parallelization to introduce useless terms in the input
program, such as + 0 and × 1. We will have a more detailed discussion about this
issue in the next section.

7.4.3 Experiments

To confirm effectiveness of the method, we did some experiments. The computa-
tional environment of our experiments is the following: Intel Core2 Duo 1.8 GHz
CPU, 1.5 GB memory, Windows XP SP3, and GHC 6.8.2. We considered six exam-
ples: function length that computes the length of the list, function max that yields
the maximum element in the list, function mis that computes the maximum initial-
segment sum of the list, function mip that computes the maximum initial-segment
product of the list, function mss that computes the maximum segment sum of the
list, and function atoi that translates the sequence of characters into a number.

Table 7.1 shows the numbers of candidates generated by our systems. Except for
the case of mip, not many candidates are considered for each problem. The reason
why many candidates are generated for mip is that it is necessary to parallelize plural
functions at once. Numbers of candidates become larger in such cases, because we
need to consider combinations of candidates of each function.

Table 7.2 shows computational times of our two parallelization systems, which
respectively use Fourier-Motzkin elimination and the method by Loos and Weispfen-
ning as their quantifier elimination procedures. For most of the examples, the paral-
lelizers generate parallel codes immediately. In the case of mss , the Fourier-Motzkin-
elimination-based system runs apparently faster than the Loos-Weispfenning-based
system, because the former uses the specialized efficient implementation of quan-
tifier elimination. While it, the Fourier-Motzkin-elimination-based system cannot
deal with atoi , because the definition of atoi contains nonlinear expressions. This
fact indicates that it is very important to design an appropriate language so that
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we can cope with our objective by efficient implementations.

Our parallelizers could not parallelize mip. The reason is the lack of power-
ful quantifier elimination method. In theory, mip can be dealt in generation-and-
testing method by using cylindrical algebraic decomposition; however, because can-
didates considered for mip is large and cylindrical algebraic decomposition is a costly
method, this approach may not be practical for the case.

7.5 Comparison of two Automatic Parallelization

Methods

In this section, we would like to give a comparison of two automatic parallelization
methods, namely the inversion-based method and the generation-and-testing-based
method. In brief, they have complementary strong and weak points, and combining
them could be an interesting future work.

7.5.1 Comparing Efficiency

First, we would like to compare efficiency of these methods.

Apparently, the most costly steps are the steps of quantifier elimination, and
thus, efficiency of the quantifier elimination procedures affects efficiency of paral-
lelization procedures a lot for both methods. Thus, this issue raises little difference
of two methods.

Next, consider the number of quantifier elimination steps required in a paral-
lelization. In the inversion-based method, the number mainly depends on the num-
ber of conditional branches in the source program and the length of lists that the
right inverse will yield. In usual, considering longer lists are required when many
functions are necessary for providing leftward and rightward definitions. Therefore,
the inversion-based method is inefficient when the input program consists of many
functions with many conditional expressions. In the generation-and-testing-based
method, the number of quantifier elimination steps highly depends on the number
of candidates generated. Therefore, as mentioned, the generation-and-testing-based
method is not effective when plural functions should be parallelized at once, namely
when the source program consists of mutually recursive functions.

7.5.2 Comparing Feasibility

The generation-and-testing method is sensitive to syntactic representation of func-
tions. We often fail to generate appropriate candidates unless we consider other
programs equivalent to the original program, which would be obtained by using
associativity, distributivity, introduction of units, and more problem-specific infor-
mation.
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As an example, recall that we considered the “non-empty” maximum initial-
segment sum problem for demonstrating the method. Now consider the usual max-
imum initial-segment sum problem, in which the empty list is also considered as an
initial segment.

mis([a]) = 0 ↑ a
mis([a] ++ x) = 0 ↑ (a+ mis(x))

For this program, we cannot generate any candidates from our candidate generation
strategy. In fact, the following a bit peculiar program can be dealt with.

mis([a]) = 0 ↑ a
mis([a] ++ x) = (0 ↑ a) ↑ (a+ mis(x))

This program is equivalent to the previous one, because mis(x) ≥ 0 holds for any
list x; besides, we can generate an appropriate candidate for this program.

Another difficulty in generation-and-testing method arises when we would like to
deal with recursive functions whose values relate each other. Consider the following
peculiar summation program.

sum1 ([a]) = a
sum1 ([a] ++ x) = a+ sum2 (x)
sum2 ([a]) = a
sum2 ([a] ++ x) = a+ sum1 (x)

The program computes the summation in a mutual recursive manner. Then, for
verifying associativity of a candidate, we need to prove the following equation.

∀a, x, y : a+ sum1 (x) + sum2 (y) = a+ sum2 (x) + sum2 (y)

In truth, the equation holds because sum1 (x) = sum2 (x) holds for any list x; how-
ever, in our implementation, we approximate the equation by the following recursion-
free equation so as to apply quantifier elimination techniques.

∀a, Lsum1 , Lsum2 , Rsum2 : a+ Lsum1 +Rsum2 = a+ Lsum2 +Rsum2

Then, the equation does not hold, and we fail in parallelization of the program.
The inversion-based method does not have such weak points. It is rarely affected

with syntactic variations or constraint on function values. However, as mentioned,
it cannot deal with length-related functions such as length and atoi . Moreover, we
can hardly specify which function is infeasible by the inversion-based method. Thus,
methods to resolve this restriction are required.

7.5.3 Relationship between two Methods

Next, we would like to discuss a relationship between the two methods. We would
like to start our discussion from the function length, which is defined as follows.

length([a]) = 1
length([a] ++ x) = 1 + length(x)
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We cannot parallelize the program by the inversion-based method. In fact, it is un-
necessary to derive an associative operator corresponding to length for parallelization
of length. Notice that length = sum ◦ mapconst1

holds and mapconst1
is trivially par-

allelizable. Therefore, it is sum that we would like to derive an associative operator
for, and deriving an associative operator for sum is trivial.

Now the issue is how to decompose length to sum ◦ mapconst1
. Note that a list

homomorphism can be decomposed into foldr with map, namely hom⊙,f = foldr⊙,ι⊙ ◦
mapf where ι⊙ is the unit of ⊙; thus, consider decomposing length to foldr with map.
The parameter of map can be determined from the result of length for singleton lists,
because foldr⊙,ι⊙([a]) = a holds. Then, since all elements in the input list become 1
by mapconst1

, the 1 in the definition of the step case can be replaced by the list element
a. In summary, we obtain the decomposition length = foldr+,0 ◦maplength◦wrap , which
is what we want to.

While this decomposition and replacement method seems clever, such replace-
ments generally break parallelizability. For a function f that is a list homomorphism,
a function g satisfying f = g ◦ mapf◦wrap may not be a list homomorphism. There-
fore, for utilizing the replacement method, we should confirm that the obtained
candidate (such as g above) is certainly a list homomorphism. However, we found
that we could frequently obtain an associative operator while confirming that the
candidate is a list homomorphism. The generation-and-testing method is based on
this observation. If there exists an effective and efficient method to check whether a
candidate is a list homomorphism or not, it may be effective to apply inversion-based
method for the candidate that is a list homomorphism.

7.6 Summary and Discussions

In this section, we have developed automatic parallelization method based on the
third list-homomorphism theorem. We have introduced two methods. One is based
on inversion, in which we derive right inverses of functions and obtain associative
operators. The other is based on generation-and-testing, in which we enumerate
candidates of associative operators and try to prove their associativity. For both
methods, the key to efficient parallel programs is the use of automatic theorem
proving techniques in addition to the third list-homomorphism theorem. Automatic
theorem proving techniques are useful not only for verification but also efficiency
improvements. Here we have concentrated on quantifier elimination techniques and
designed a programming language that is suitable for the use of quantifier elimi-
nation. Then, we can derive parallel programs for nontrivial problems in practical
costs. Since our parallelization methods rely on existing studies about automatic
theorem proving and automatic inversion, research progress on these topics will
improve effectiveness of our methods.

There are many studies about automatic parallelization; however, most of them
struggled to find known parallelizable computational patterns from programs [RF93,
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SKN96, Pot98, GGL06]. While importance of reduction operations is well recog-
nized [DCCS06], most of the existing studies only consider specific cases of reduc-
tion operations such as addition and multiplications, and fewer studies considered
generating associative operators that enhance parallel computations.

To our knowledge, there are two approaches to automatic parallelization of re-
ductions, or especially automatic derivation of list homomorphisms. One is based
on the third list-homomorphism theorem, and the other is based on the closure
property for function compositions.

In this chapter, we introduced automatic parallelization methods based on the
third list-homomorphism theorem. The strong point of the theorem is that users
can provide useful information to systems by writing both leftward and rightward
programs. As discussed in Chapter 6, additional information should be necessary for
parallelization in general. The use of the third list-homomorphism theorem enables
us to specify additional information naturally.

Geser and Gorlatch [GG99] also proposed an automatic parallelization method
based on the third list-homomorphism theorem, which also adopts generation-and-
testing strategy. Their system first generates a function that is a generalization
of both of the leftward and rightward programs, and checks associativity of the
operator raised by the function. We have shown that even a more sloppy and naive
strategy works well. For dealing with more difficult problems, their strategy will be
effective to reduce the number of candidates.

While the third list-homomorphism theorem is effective for automatic paral-
lelization, writing two programs is a bother. It is an important research topic
to clarify effectiveness of the additional information supplied from the third list-
homomorphism theorem and to what extent we can obtain a parallel program from
a sequential program.

It is a folk fact that we can perform efficient parallel computation of a loop if
compositions of functions corresponding an iteration of the loop can be computed ef-
ficiently [Cal92,CTH98]. Based on this fact, some automatic parallelization methods
are proposed. Callahan [Cal92] showed automatic parallelization of differential com-
putations. Fisher and Ghuloum [FG94] did a solid study for function-composition-
based automatic parallelization. Xu et al. [XKH04] showed that this strategy can
be used in ease if users tell algebraic properties of primitive operators to the system,
such as distributivity and associativity. These results are attractive because we can
obtain a parallel program from only one sequential program. However, as the study
of Xu et al. indicates, it may be necessary to supply some additional information
to system for effective parallelization.

As a final remark of this chapter, we would like to give a brief discussion about
how to parallelize functions that do not exactly match with list homomorphisms.

Prefix and postfix computations, namely scanl and scanr, are important classes of
computations in parallel programming [Ble89,LD94]. It is well known both scanl⊕,e

and scanr⊕,e are computable in parallel if ⊕ is associative. Since we have developed
methods to derive associative operators, the methods are also applicable for deriving
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parallel programs for prefix/postfix computations, once we can identify them.
In existent studies [FG94,CTH98,HTI99], several people proposed methods to

identify prefix/postfix computations and decompose them from reduction compu-
tations. Their methods are similar to the method used in generation-and-testing
parallelization for performing incremental parallelization. In the paper of Morita
et al. [MMM+07], another approach to identifying prefix/postfix computations was
proposed. They prepare a languages to force user to write prefix and postfix compu-
tations explicitly, which are identified as the patterns mapf ◦ inits and mapf ◦ tails ,
respectively. Since maphom⊙,g

◦ inits = scanl⊙,ι⊙ ◦ mapg and maphom⊙,g
◦ tails =

scanr⊙,ι⊙ ◦ mapg hold, where ι⊙ is the unit of ⊙, the parallelization problems of
the patterns are reduced into the parallelization problem of f ; thus, parallelization
methods for reductions are directly applicable.

As seen in Sections 6.2 and 6.3, list homomorphisms can characterize parallel
computations on not only lists but also trees. Therefore, we will hopefully be able
to develop automatic parallelization methods for functions traversing trees based on
parallelization methods on lists. However, we have not developed any results so far,
and it is a topic of further research.





Chapter 8

Conclusion

8.1 Summary of the Thesis

In this thesis, we studied a calculational approach to automatic construction of
efficient algorithms. We mainly considered construction of two kinds of algorithm
patterns: dynamic programming algorithms and divide-and-conquer algorithms. For
both patterns, we prepared calculational laws for automatic construction of algo-
rithms of the patterns, designed languages for automatic implementation of the
calculational laws, and proposed systems that automatically derive efficient pro-
grams.

As the former part, we discussed derivation of efficient algorithms for combina-
torial optimization problems. We demonstrated that it was important for algorithm
development to specify structures of problems, such as structures of generating can-
didates, structures of orders to optimize (or objective functions), and structures
of constraints that solutions should satisfy. Based on them, we proposed calcula-
tional laws that enabled us to derive and confirm monotonicity conditions in ease.
Our calculational laws are effective for deriving dynamic programming algorithms,
as we confirmed it by deriving efficient algorithms for shortest path problems and
their variants. To bring our calculational laws to practical uses, we designed a
domain-specific language for optimal path querying. We demonstrated that the
domain-specific language enabled us to perform efficient optimal path querying for
a large set of problems.

As the latter part, we discussed parallelization problems. We focused on the third
list-homomorphism theorem, which is useful to reveal additional information that
is effective to construct divide-and-conquer parallel programs. We confirmed that
theories on lists can be generalized to trees by considering divide-and-conquer algo-
rithms on paths, and introduced the third list-homomorphism theorem on trees. The
theorem is generic in the sense that it can deal with all polynomial data structures.
We demonstrated that the third list-homomorphism theorem is useful for developing
efficient parallel programs not only on lists but also on trees by several examples.
In addition, we proposed automatic implementations of parallelization. Our imple-



158 8. Conclusion

mentations are based on a language that is designed so as to utilize not only the
third list-homomorphism theorem but also quantifier elimination techniques, which
are useful for verifying correctness and improving efficiency of derived programs.

The key was to specify latent information that was effective for constructing
efficient algorithms. In the case of combinatorial optimization problems, we focused
on incrementality condition, which formed an interface to efficient algorithms, and
based on the interface, we designed a domain-specific language for optimal path
querying. In the case of parallelization, we focused on a set of functions that implied
existence of an associative operator, and then, even such a naive procedure as brute-
force searching could derive parallel programs. Another key was design of languages.
Syntactic restrictions on languages clarify structures of problems and supply useful
information to program transformation systems.

8.2 Future Works

Our study is a small step to automatic construction of algorithms. We only con-
sidered two algorithm patterns, and our automatic algorithm construction methods
could deal with only restricted class of problems. Many problems are left unsolved,
even if we exclude technical ones, and there are many interesting directions for
further studies.

An important and interesting topic is to study automatic algorithm construc-
tion of another algorithm pattern. Especially, greedy algorithms are one of the most
interesting algorithm patterns, because they are very efficient but hard to prove cor-
rectness. Approximation algorithms and randomized algorithms are also interesting
patterns, because they are very useful in practice.

Another is to provide a unified language on which we can automatically derive
several kinds of algorithm patterns. In this thesis, we independently designed a
language for each case to automate derivation of efficient algorithms. However, the
languages designed are similar to each other: a set of catamorphisms that consist of
conditional expressions of restricted forms. Catamorphisms enable us to utilize in-
duction, which is very useful to verify properties. Conditional expressions reinforce
expressiveness of languages, while conditional expressions are generally difficult to
deal with. In short, automatic algorithm development may consist of certain pat-
terns, which would be captured by a language for it.

It is also interesting to study combination of plural automatic algorithm con-
struction frameworks. We considered neither further improvement nor automatic
derivation of efficient implementation for derived algorithm patterns. Automatic al-
gorithm construction frameworks will be suitable for combining each other, because
we can predict derived programs.

Last but not the least, it should be promising to study intensive use of auto-
matic theorem proving techniques in automatic algorithm construction. As seen,
derivation of efficient algorithms usually requires to verify certain properties, such
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as monotonicity and associativity, and it is one of the hardest steps in automatic al-
gorithm construction. Automatic theorem proving techniques will form ready-made
program analysis tools and help us to verify such properties.

We are hoping that a lot of algorithms will be derived automatically.

シェクスピイアも、ゲエテも、李太白も、近松門左衛門も滅びるであろう。しかし
芸術は民衆の中に必ず種子を残している。わたしは大正十二年に「たとい玉は砕けて
も、瓦は砕けない」と云うことを書いた。この確信は今日でも未だに少しも揺るがず
にいる。

又

打ち下ろすハンマアのリズムを聞け。あのリズムの存する限り、芸術は永遠に滅び
ないであろう。（昭和改元の第一日）

又

わたしは勿論失敗だった。が、わたしを造り出したものは必ず又誰かを作り出すで
あろう。一本の木の枯れることは極めて区々たる問題に過ぎない。無数の種子を宿し
ている、大きい地面が存在する限りは。（同上）

（芥川龍之介「侏儒の言葉（遺稿）」1より）

1青空文庫: www.aozora.gr.jp.
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