
Parallel Depth First Proof Number Search

Tomoyuki Kaneko
Department of Graphics and Computer Sciences

University of Tokyo, Japan
kaneko@acm.org

Abstract

The depth first proof number search (df-pn) is an effective
and popular algorithm for solving and-or tree problems by
using proof and disproof numbers. This paper presents a sim-
ple but effective parallelization of the df-pn search algorithm
for a shared-memory system. In this parallelization, multiple
agents autonomously conduct the df-pn with a shared trans-
position table. For effective cooperation of agents, virtual
proof and disproof numbers are introduced for each node,
which is an estimation of future proof and disproof numbers
by using the number of agents working on the node’s descen-
dants as a possible increase. Experimental results on large
checkmate problems in shogi, which is a popular chess vari-
ant in Japan, show that reasonable increases in speed were
achieved with small overheads in memory.

Introduction

Proof number search and its variations have been extensively
researched to efficiently identify the game-theoretical value
in and-or trees. The depth first proof number search (df-
pn) is an effective algorithm and has many applications, in-
cluding checkers (Schaeffer et al. 2007). Other applications
of df-pn contain checkmate problems in shogi which is a
popular chess variant in Japan (Nagai 2001), and tactical
problems in Go (Kishimoto 2005; Yoshizoe, Kishimoto, and
Müller 2007). They are not only interesting by themselves,
and also real problems that computer players must solve to
win in shogi or Go. The parallelization presented here is
designed to be suitable for such situations.

For example, in shogi, most strong programs use (a vari-
ant of) the df-pn in addition to a variant of the standard
alpha-beta search. In shogi, an endgame is usually a race
between two players. Each player wants to force their op-
ponent’s king into a checkmate sequence first (Iida, Sakuta,
and Rollason 2002). Professional players often win by find-
ing a forced checkmate sequence with more than 30 plies,
where the branching factor in the endgame often increases
beyond 200. The size of the search space explains why the
df-pn is used to perform a deep and selective search, special-
ized for finding a checkmate sequence.

Figure 1 shows a simple search code which incorporates
the df-pn for checkmate search. SearchRoot() and Search-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

SearchRoot(position) {

if (Checkmate(position, the opponent)) return Win

usual iterative deepening is performed here
}
SearchInternal(position, α, β) {

run PVS or PV Splitting and return β if cut off happened

if (Checkmate(position, the opponent)) return Win

return α
}

Figure 1: Two types of invocation of df-pn (shaded in gray)
inside PVS or PV Splitting

Internal() are standard alpha-beta search functions for the
root node and for a non-root node respectively. The lines for
checkmate search are shaded in gray. In root nodes, a check-
mate sequence is carefully searched; otherwise, a checkmate
search is performed only when a β cutoff does not occur.
Resources used for a checkmate search depend on the esti-
mation of criticality of the position.

As multi-core processors become popular, the efficiency
of the df-pn search becomes important in combination with
parallel search methods such as Principal Variation (PV)
splitting (Marsland, Member, and Popowich 1985). There
are two major issues for improvement: the parallelization of
the df-pn and the use of interim results using the algorithm
in different threads. For root nodes, the parallelization of the
df-pn is beneficial because additional CPU resources will be
available. For other nodes, all CPU resources are used for
execution of SearchInternal in different nodes. Thus, instead
of the parallelization of the df-pn, the sharing of informa-
tion will improve efficiency because the same position is fre-
quently visited by using the df-pn in different threads. Note
that similar situations will also occur in Go when one com-
bines a parallel Monte-Carlo tree search (Chaslot, Winands,
and Herik 2008) and a tactical search (Cazenave and Helm-
stetter 2005). This paper first introduces a framework of
sharing information among virtual agents conducting the df-
pn and presents a method for parallel cooperation of agents
based on the framework.

The rest of this paper is organized as follows: The next
section reviews related research. After a brief introduc-
tion of the df-pn search algorithm, our parallelization is

95

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



presented. Then, the experimental results in shogi are dis-
cussed, followed by concluding remarks.

Related Work

Proof number search (PNS) is an effective and-or tree search
method that uses proof and disproof numbers (Allis, van der
Meulen, and van den Herik 1994). The details of this method
are explained in the next section. Since PNS is a type of
best first search, all nodes must be kept in memory. Thus,
PNS is not suitable for solving large problems, and there are
actually many checkmate problems in shogi that PNS can-
not solve. To solve such difficult problems, several depth-
first variants that use proof numbers and disproof numbers
were developed (Seo, Iida, and Uiterwijk 2001; Nagai 1998;
Ueda et al. 2008). Among these variations, the df-pn (Na-
gai 2001) is the most promising. The behavior of this algo-
rithm is equivalent to that of PNS on condition that the state
space is actually a “tree”. It also achieves memory efficiency
by introducing garbage collection (GC) of subtrees when
needed. Note that the state space of some popular games
are not trees and contain cycles. In such cases, additional
techniques are required to avoid complicated problems such
as graph history interaction (GHI) (Kishimoto 2005) and es-
timation problems (Kishimoto 2010).

Many methods have been developed for parallelization of
a game tree search based on an alpha-beta search (Marsland,
Member, and Popowich 1985; Brockington 1997). How-
ever, there has been little research on the parallelization
of and-or tree search methods based on proof and disproof
numbers. The difficulty is in a task decomposition method
since one can hardly expect the width and depth of the tree
to be searched in these methods based on proof numbers.
Pioneering work is ParaPDS which increases the speed with
a scaling factor of 3.6 over a sequential PDS using 16 dis-
tributed processors (Kishimoto and Kotani 1999). Recently,
parallelization based on randomization was applied to PNS
(Saito, Winands, and van den Herik 2009). In this work, a
best-first version called RP-PNS achieved a reasonable in-
crease in speed in a “Lines of Action” game; however, the
memory overheads reached almost 50%. We focused on the
parallelization of the df-pn which has advantages over PNS,
and similar increases in speed were achieved with much less
overheads.

Recently, parallelization of a Monte-Carlo tree search has
been intensively investigated in Go. A notable idea on par-
allelization of a Monte-Carlo tree search is the notion of
“virtual wins” or “virtual losses” (Chaslot, Winands, and
Herik 2008), which was effective in assigning processors
to Monte-Carlo playouts. Virtual wins and losses have an
interesting similarity with virtual proof numbers introduced
in this paper, though there are substantial differences in the
behavior of agents in parallelization.

Depth First Proof Number Search

This section briefly reviews the df-pn algorithm based on
proof and disproof numbers defined over an and-or tree. The
purpose of an and-or tree search is to identify the game-
theoretical value (proof or disproof) of the root node of and-

or trees. In the cases of checkmate search, proof is defined as
win for the attacker, and disproof is defined as an evasion of
the defender into positions where no check move exists. An
OR-node is for a position of the attacker’s turn where he/she
tries to find a forced win with the checkmate sequence. An
AND-node is for a position of the defender’s turn.

Proof Numbers and Disproof Numbers

A pair of heuristic numbers called proof numbers (p̂n(n))

and disproof numbers (d̂n(n)) are used in the df-pn as well
as in PNS. Proof and disproof numbers are defined for each
node n. The p̂n(n) is an estimation of the difficulty in
proving a node n in the current search tree. Its value is
defined as the minimum number of leaf nodes in the tree
that have to be newly proven to prove n. Similarly, disproof

numbers d̂n(n) are the minimum number of leaf nodes that
have to be newly disproven to disprove n. Consequently,

(p̂n(n), d̂n(n)) = (1, 1) if n is a frontier node in the cur-

rent tree. Also, (p̂n(n), d̂n(n)) is (0,∞) or (∞, 0) if n is
already proven or disproven, respectively.

When the search space is a directed acyclic graph,
it is computationally infeasible to identify the exact

(p̂n(n), d̂n(n)) defined above for internal nodes that are not
proven nor disproven yet. As a result, an approximation of

(p̂n(n), d̂n(n)) by (pn(n), dn(n)) are used in the df-pn, cal-
culated by

pn(n) =

{
minc∈child(n) pn(c) (n is OR node)∑

c∈child(n) pn(c) (n is AND node)

dn(n) =

{
minc∈child(n) dn(c) (n is AND node)∑

c∈child(n) dn(c) (n is OR node)

(1)
based on the assumption that the search space is a tree.
This assumption causes overestimation of proof and dis-
proof numbers, see (Kishimoto 2005; 2010) for practical
cures.

Df-pn and PNS

PNS repeatedly expands a frontier node, called the “most-
proving node”, in a best-first manner until the game-
theoretical value of the root is determined (Allis, van der
Meulen, and van den Herik 1994). The most proving node
is identified by recursively selecting a child from the root
that has the least pn (dn) among its siblings if the parent is
an OR (AND) node. The df-pn expands the same frontier
node in a depth-first manner guided by a pair of thresholds
(thpn, thdn), which indicates whether the most-proving node
exists in the current subtree. This difference improved run-
time efficiency in the df-pn and also made the incorporation
of GC available.

The pseudo code of the df-pn is shown in Figure 2. The
lines shaded in gray are enhancements used in the df-pn+,
which are explained in the next subsection. OrNode() is
a function for OR-nodes, in which the df-pn searches de-
scendants of a given node n while (pn(n), dn(n)) are under
the given threshold (thpn, thdn). The most proving child n1

with the least proof number is visited next by calling the

96



OrNode(n,thpn,thdn) {
Mark(n)
while (true) {

foreach children c {

(pn(c), dn(c)) = Lookup(c) or (Hpn(c),Hdn(c))

pn(c) += Costpn(n, c)

dn(c) += Costdn(n, c)

}
compute pn(n) and dn(n) by Equation (1)
if (pn(n) ≥ thpn or dn(n) ≥ thdn) break

identify two children (n1, n2) with the two least pn
s.t. pn(n1) ≤ pn(n2) ≤ pn(others)

np = min(thpn, pn(n2) + 1) - Costpn(n, n1)

nd = thdn − dn(n) + dn(n1)
AndNode(n1,np, nd)

}
Store(n, pn(n), dn(n))
Unmark(n)

}

Figure 2: Pseudo code of df-pn and df-pn+ (shaded in gray).

function AndNode with a new threshold computed using the
thresholds for n as well as proof and disproof numbers of
all children. The proof and disproof numbers for children c
are retrieved from a transposition table. When the proof and
disproof numbers are not stored in the table, they are initial-
ized with (1, 1). This is a case when c is a never visited fresh
node or when the information of c is discarded by GC.

When either pn(n) or dn(n) becomes equal to or greater
than its threshold, the df-pn leaves n and returns to the parent
in order to expand the most proving node outside the subtree
of n. The df-pn may visit n again when a frontier node inside
the subtree of n becomes the most proving node.

Similarly, the most proving child with the least disproof
number is visited in AND-nodes. There is a clear sym-
metry between proof (disproof) numbers in OR-nodes and
disproof (proof) numbers in AND-nodes, and the function
AndNode() is defined similarly.

Enhancements in Df-pn

Many enhancements have been developed for the df-pn. The
df-pn+ was largely improved by introducing heuristic eval-
uation functions into the df-pn (Nagai and Imai 1999). The
differences between the df-pn+ and df-pn are shaded in gray
in Figure 2. Proof and disproof numbers are no longer ini-
tialized with (1, 1), instead, they are initialized using the
evaluation functions, Hpn and Hdn, which are designed to
predict future proof (disproof) numbers. Costpn and Costdn

are also evaluation functions. While the effect of H vanishes
once the node is expanded, the effect of Cost persists until a
game-theoretical value is identified. In the experiments dis-
cussed in “Experimental Results” section, H are computed
with a two-ply fixed-depth search (Kaneko et al. 2005), and
a penalty for sacrificing moves is given as Cost.

Many games have special rules about the repetition of the
same position, such as the SuperKo rule in Go. To detect
repetitions, a flag for each node indicating whether the node

OrNodePar(n,thpn,thdn, tid ) {

Mark(n, tid )
while (true) {

foreach children c {

lock(c)

(pn(c), dn(c)) = Lookup(c) or (Hpn(c),Hdn(c))

pn(c) += Costpn(n, c) + T(n,c) /* vpn */

dn(c) += Costdn(n, c)

unlock(c)

}
compute pn(n) and dn(n) by Equation (1)
if (pn(n) ≥ thpn or dn(n) ≥ thdn) break

identify two children (n1, n2) with the two least pn
s.t. pn(n1) ≤ pn(n2) ≤ pn(others)

np = min(thpn, pn(n2) + 1) - Costpn(n, n1)
nd = thdn − dn(n) + dn(n1)

AndNodePar(n1,np, nd, tid )

if (stopped by other agents) break

}

lock(n)

unless (n was (dis)proven by other agents)

Store(n, pn(n), dn(n))

unlock(n)

Unmark(n, tid )

if (pn(n)=0 or dn(n)=pn0) stop agents in descendants(n)

}

Figure 3: Pseudo code of an agent in parallel df-pn+ (differ-
ences with sequential codes are shaded in gray)

is currently visited or not is maintained by Mark() and Un-
mark() functions called at the beginning and ending of OrN-
ode(). Note that one should carefully treat a repetition, to
avoid graph history interaction (GHI) problems. See (Kishi-
moto 2005) for details.

Another important enhancement is a cure for overestima-
tion problems caused by DAG. The basic idea is that one
should sometimes take the maximum instead of the total in
computation of proof and disproof numbers in Equation (1).
See (Nagai 2001; Kishimoto 2010) for precise conditions
and discussions.

Parallelization of Df-pn

This section presents our parallelization of the df-pn. In a
popular parallelization, decomposed tasks are executed in
parallel. However, such a top-down assignment of tasks
is difficult because one can hardly estimate the search tree
needed to be expanded to solve a problem before finding a
solution. Thus, we propose a multi-agent framework that
gradually integrates, in a bottom-up way, the interim results
of the df-pn. Figure 3 presents codes of a df-pn agent for par-
allel cooperation. OrNodePar() is a function for OR-nodes,
where the lines shaded in gray are the differences with the
codes of the sequential df-pn+. The function AndNodePar()
is defined similarly.

In this parallelization, agents share a transposition table

97



for proof and disproof numbers, to use the results of sub-
trees expanded by other agents. Thus, lock() and unlock()
are added around Lookup() and Store(). The lock overhead
was small and about 1% in the experiments. Before Store(),
an agent tests whether a proof or disproof is already found
by other agents, so as not to overwrite it with an interim
result. Also, Mark() and Unmark() functions are extended
with an additional argument of a thread id (tid) to determine
who is currently visiting that node. These modifications are
sufficient for using agents in parallel.

Note that some enhancements not discussed here use
path-dependent information. Such information should be
kept in thread local storage when an agent works on differ-
ent root nodes. See (Kishimoto 2005) for details on such en-
hancements and implementations of path-dependent infor-
mation.

Balancing of Search Trees and Cut-offs

This section addresses the issues of balancing and cut-offs,
to make agents suitable for harmoniously solving a common
problem with a simple driver shown in Figure 4.

For each agent to expand search trees to be slightly dif-
ferent from each other, a virtual proof number vpn(n, c) is
introduced as vpn(c) = pn(c) + Costpn(n, c) + T (n, c).
T (n, c) acts as a pheromone in multi-agent systems (Blum
and Roli 2003) and represents the congestion of agents at
c. Since the node with the least proof number is selected at
OR-nodes, a positive value of T (n, c) makes c less visited
than cases for T (n, c) = 0. If T is always 0, the same tree
is expanded as the sequential df-pn+. Although the ideal
shape of T (n, c) is not known, a simple function returning
the number of agents visiting the descendants of c is suffi-
cient for the experiments described in the next section. The
number of such agents can easily be obtained as a set of tids
maintained by Mark() and Unmark() functions. Similarly, a
virtual disproof number vdn(n, c) is introduced for AND-
nodes.

Once a node is proven or disproven, search on the node’s
descendants is no longer valuable because it does not affect
the game-theoretical value of the root node. It is similar to
beta-cut in alpha-beta searches. Thus, to stop search in such
cases, two modifications are applied at the end of AndNode-
Par() and the end of Unmark(). For an efficient implemen-
tation of this facility, a stack is allocated for each thread.
In Mark() and Unmark() functions, the Zobrist hash of n is
pushed into and popped from the stack, respectively. When
an agent stops other agents at the next line of Unmark(), it
asynchronously notifies the Zobrist hash of n to the agents.
Each agent will test whether a hash is notified by another
agent at the next line of AndNodePar(). When notified, it
then examines its stack to see whether the notified hash is
still one of the ancestors of a node currently visiting.

Experimental Results
To show the effectiveness of the parallelization presented in
the previous section, experiments in shogi were conducted.
A computer with two quad-core CPUs with AMD Opteron
Processor 2376 running 64-bit linux was used for the ex-
periments. The author’s implementation is available as part

ParallelCheckmateSearch(n) {
parallel-for each thread (tid)

OrNodePar(n,∞,∞,tid)
return (pn(n), dn(n)) stored in table

}

Figure 4: Pseudo code of parallel df-pn+ driver.

Figure 5: Comparison of solution time for each problem

of open source software at http://gps.tanaka.ecc.
u-tokyo.ac.jp/gpsshogi/. While both parallel and
sequential versions worked well with GC, the experiments
were conducted without GC to measure search overheads in
terms of expansion of irrelevant nodes.

First, the sequential df-pn+ was implemented with state-
of-the-art techniques (Kawano 1996; Nagai 2001; Kishi-
moto 2005; Kaneko et al. 2005). The performance of this
df-pn+ is expected to be better or equal to other methods,
though it is difficult to show precise comparisons. For exam-
ple, PN* search required 550,939,913 nodes to be searched
for more than 20 hours (Seo, Iida, and Uiterwijk 2001) to
solve “Microcosmos,” which is a famous checkmate prob-
lem whose solution consists of 1,525 steps. Now, the df-
pn+ solved it with less than 50,000,000 nodes within three
minutes. The reduction in the number of nodes searched
suggests the advantage of the df-pn+, while better hardware
can contribute to reducing solution time.

Two problem sets, Shogi-Zuko and Shogi-Muso, were
used in these experiments as in (Seo, Iida, and Uiterwijk
2001). While they were created during the Edo period in
Japan more than 200 years ago, they are still good test-sets
with relatively large problems whose solution steps often
exceed one hundred. Because they contain some defective
problems, 99 and 94 complete problems out of 100 prob-
lems were used. All the problems were successfully solved
with all implementations. Figure 5 shows that the parallel
df-pn+ with 8-threads solved problems faster than the se-
quential df-pn+. The horizontal axis plots the solution time
in seconds by the sequential one, and the vertical axis plots
those for the parallel one. Almost all problems were solved
in a shorter time with the parallel df-pn+. Larger increases
in speed was observed for problems where the sequential df-
pn+ required more solution time, and the scaling factor for
the four largest problems was more than 4.0.

Figure 6 shows scaling factors in speed for 2, 4, and 8

98



Figure 6: Scaling factors in 2, 4, and 8 threads for Hard
problems

Figure 7: Imbalance in game tree sizes measured for nodes
in proof tree for 100-th problem in Shogi-Muso.

threads, as well as the overheads measured by the number
of visited and stored nodes in the parallel search divided by
that in the sequential one. These statistics are measured us-
ing a subset of the problems called Hard, which consists of
29 such problems the sequential df-pn+ required more than
1,000,000 nodes to solve. The scaling factors were 2.71 and
3.58 for 4 and 8 threads, respectively, while the search over-
head was about 11% at 8 threads. While the scaling factors
were similar, the overhead was much less than that reported
with RP-PNS in Lines of Action (2009).

The scaling factors observed seem modest compared to
those in parallel search for multi-value game trees. The rea-
son can partially be explained by the imbalance in proof
trees, where a proof tree is a subset of a searched game tree
that consists of nodes required to prove the root position.
Here, we show statistics of the proof tree identified by the
sequential df-pn+ for the 100-th problem of Shogi-Muso,
where the solution consists of 163 steps. Let a primary child
p in node n be a child with the largest searched subtree if n is
an AND-node and be a proven child if n is an OR-node. The
vertical axis in Figure 7 plots the ratio of the subtree size of
p divided by the tree size of n, and the horizontal axis plots
the subtree size of n. The ratio is often over 90%, even in
AND-nodes as well as in OR-nodes. This indicates that one
has to allocate most resources to one child for each node, and
explains the difficulty in task decomposition. On the other
hand in cases of multi-value search, subtrees are expected to
be balanced at nodes called “ALL nodes”, where β cut-off
did not occur.

Detailed performance of the parallel df-pn+ are summa-

rized in the upper half of Table 1. For each problem set, the
number of nodes visited, that of nodes stored, and solution
time are listed. The search trees may vary for each execu-
tion, if the number of threads≥ 2, at nodes that are irrelevant
to construct the proof of the root. Therefore, an average of
ten executions is presented for each cell, as well as the stan-
dard deviation (σ) for solution time. The lower half of Table
1 lists the same data for the df-pn where the evaluation func-
tions (H and Cost) implemented in the df-pn+ are switched
off. The nodes visited in the df-pn+ includes those using a
two-ply fixed depth search serving as H. Because the fixed
depth search is much faster than search in the df-pn, the df-
pn+ solved problems quicker than df-pn even when larger
numbers are reported in “#node visited” for the df-pn+. In
summary, the df-pn+ and df-pn both significantly increased
speed, and the improvement in the df-pn+ is greater than
that of the df-pn. This can be explained by the fact that more
nodes tend to have similar proof and disproof numbers if
evaluation functions are absent.

Concluding Remarks

This paper presented a simple but effective parallelization
of the df-pn search algorithm for a shared-memory system.
The parallelization is based on asynchronous cooperation
of agents, where each agent independently conducts a df-
pn with a shared transposition table. The implementation
is much simpler than other parallel search methods and re-
quires little modification from its sequential implementation
of the df-pn. For effective cooperation of agents, virtual
proof and disproof numbers are introduced for each node,
which is an estimation of future proof and disproof numbers
by the number of agents working on the node’s descendants.

Experimental results on large checkmate problems in
shogi showed that reasonable increases in speed were
achieved with small overheads in memory. The scaling fac-
tor was about 3.6 in 8 threads, and search overheads were
less than 15% for large problems. This is the first result
of parallelization in the df-pn, and to the best of the author’s
knowledge, the performance was better than or at least equal
to those in current research on parallelization of proof num-
ber search variants.

Acknowledgments

The author would like to thank the anonymous referees for
their beneficial comments.

References

Allis, L. V.; van der Meulen, M.; and van den Herik, H. J.
1994. Proof-number search. Artificial Intelligence 66:91–
124.

Blum, C., and Roli, A. 2003. Metaheuristics in combina-
torial optimization: Overview and conceptual comparison.
ACM Comput. Surv. 35(3):268–308.

Brockington, M. G. 1997. Asynchronous Parallel Game-
Tree Search. Ph.D. Dissertation, Department of Computing
Science, University of Alberta.

99



Table 1: Increase in speed in df-pn+

#thread #node visited overhead #table overhead seconds σ speedup

Muso 1 68,114,896.0 - 11,491,308.0 - 235.0 - 1.00
2 77,684,522.2 1.14 13,027,766.5 1.13 159.7 13.8 1.47
4 79,551,231.2 1.16 13,257,241.6 1.15 95.9 5.2 2.45
8 83,587,512.6 1.22 13,694,800.8 1.19 74.9 6.1 3.13

Zuko 1 87,411,686.0 - 14,360,182.0 - 317.8 - 1.00
2 96,082,504.3 1.09 16,014,805.7 1.11 213.2 23.4 1.49
4 97,858,084.2 1.11 16,376,611.5 1.14 126.2 7.9 2.51
8 105,888,878.9 1.21 17,354,390.5 1.20 102.5 6.4 3.01

Hard 1 132,403,071.0 - 21,004,381.0 - 493.0 - 1.00
2 141,306,495.1 1.06 22,873,823.6 1.08 313.8 29.6 1.57
4 141,917,849.5 1.07 23,121,211.8 1.10 181.4 10.5 2.71
8 147,729,337.7 1.11 23,757,377.6 1.13 137.5 5.7 3.58

Increase in speed in df-pn

#thread #node visited overhead #table overhead seconds σ speedup

Muso 1 49,068,219.0 - 16,239,257.0 - 259.1 - 1.00
2 50,283,856.5 1.02 16,894,628.1 1.04 166.9 10.3 1.55
4 50,947,624.0 1.03 17,475,295.5 1.07 103.9 5.9 2.49
8 55,438,399.7 1.12 18,832,165.2 1.15 92.2 5.0 2.81

Zuko 1 71,873,553.0 - 24,319,554.0 - 463.9 - 1.00
2 73,589,641.6 1.02 25,465,728.8 1.04 279.8 45.4 1.65
4 71,261,572.7 0.99 25,060,111.5 1.03 164.3 13.3 2.82
8 84,160,639.6 1.17 29,327,590.0 1.20 158.4 16.8 2.92

Hard 1 103,166,296.0 - 33,477,914.0 - 644.0 - 1.00
2 103,688,841.7 1.00 34,455,449.8 1.02 386.6 42.0 1.66
4 99,371,797.2 0.96 33,845,832.7 1.01 223.3 17.3 2.88
8 112,912,943.8 1.09 38,439,427.4 1.14 203.9 16.7 3.15

Cazenave, T., and Helmstetter, B. 2005. Combining tactical
search and monte-carlo in the game of go. In Proceedings
of CIG, 171–175. IEEE.

Chaslot, G. M.; Winands, M. H.; and Herik, H. J. 2008.
Parallel monte-carlo tree search. In CG ’08: Proceedings of
the 6th international conference on Computers and Games,
60–71. Berlin, Heidelberg: Springer-Verlag.

Iida, H.; Sakuta, M.; and Rollason, J. 2002. Computer shogi.
Artificial Intelligence 134(1–2):121–144.

Kaneko, T.; Tanaka, T.; Yamaguchi, K.; and Kawai, S. 2005.
Df-pn with fixed-depth search at frontier nodes. In The 10th
Game Programming Workshop, 1–8. (In Japanese).

Kawano, Y. 1996. Using similar positions to search game
trees. In Nowakowski, R. J., ed., Games of No Chance, vol-
ume 29 of MSRI Publications, 193–202. Cambridge Univer-
sity Press.

Kishimoto, A., and Kotani, Y. 1999. Parallel AND/OR tree
search based on proof and disproof numbers. In Game Pro-
gramming Workshop in Japan, number 14, 24–30.

Kishimoto, A. 2005. Correct and Efficient Search Algo-
rithms in the Presence of Repetitions. Ph.D. Dissertation,
University of Alberta.

Kishimoto, A. 2010. Dealing with infinite loops, under-
estimation, and overestimation of depth-first proof-number
search. In AAAI, to appear.

Marsland, T. A.; Member, S.; and Popowich, F. 1985. Paral-

lel game-tree search. IEEE Transactions on Pattern Analysis
and Machine Intelligence 7:442–452.

Nagai, A., and Imai, H. 1999. Application of df-pn+ to Oth-
ello endgames. In Game Programming Workshop in Japan
’99, 16–23.

Nagai, A. 1998. A new AND/OR tree search algorithm us-
ing proof number and disproof number. In Complex Games
Lab Workshop. Electrotechnical Laboratory, Machine Infer-
ence Group, Tsukuba, Japan.

Nagai, A. 2001. Df-pn Algorithm for Searching AND/OR
Trees and Its Applications. Ph.D. Dissertation, the Univer-
sity of Tokyo.

Saito, J.-T.; Winands, M.; and van den Herik, H. J. 2009.
Randomized parallel proof-number search. In Advances in
Computer Games (ACG 2009), to appear.

Schaeffer, J.; Burch, N.; Bjornsson, Y.; Kishimoto, A.;
Muller, M.; Lake, R.; Lu, P.; and Sutphen, S. 2007. Check-
ers is solved. Science 1144079+.

Seo, M.; Iida, H.; and Uiterwijk, J. W. 2001. The PN*-
search algorithm: Application to tsume-shogi. Artificial In-
telligence 129(1-2):253–277.

Ueda, T.; Hashimoto, T.; Hashimoto, J.; and Iida, H. 2008.
Weak proof-number search. In CG ’08, 157–168. Berlin,
Heidelberg: Springer-Verlag.

Yoshizoe, K.; Kishimoto, A.; and Müller, M. 2007. Lambda
depth-first proof number search and its application to go. In
Veloso, M. M., ed., IJCAI, 2404–2409.

100


	AAAI-10
	Contents
	Index
	Help
	Terms
	AAAI




