
Visualization and Adjustment of Evaluation Functions
Based on Evaluation Values and Win Probability

Shogo Takeuchi Tomoyuki Kaneko
Department of Graphics and Computer Sciences, the University of Tokyo, Japan

{takeuchi,kaneko,yamaguch}@graco.c.u-tokyo.ac.jp

Kazunori Yamaguchi Satoru Kawai
The University of the Air

kawai@acm.org

Abstract

We present a method of visualizing and adjusting the eval-
uation functions in game programming in this paper. It is
widely recognized that an evaluation function should assign
a higher evaluation value to a position with greater proba-
bility of a win. However, this relation has not been utilized
directly to tune evaluation functions because of the difficulty
of measuring the probability of wins in deterministic games.
We present the use of win percentage to utilize this relation in
positions having the same evaluation value as win probability,
where the positions we used were stored in a large database
of game records. We introduce an evaluation curve formed
by evaluation values and win probabilities, to enable evalua-
tion functions to be visualized. We observed that evaluation
curves form a sigmoid in various kinds of games and that
these curves may split depending on the properties of posi-
tions. Because such splits indicate that an evaluation function
that is visualized misestimates positions with less probability
of winning, we can improve this by fitting evaluation curves
to one. Our experiments with Chess and Shogi revealed that
deficiencies in evaluation functions could be successfully vi-
sualized, and that improvements by automatically adjusting
their weights were confirmed by self-plays.

Introduction

The most successful approach in game programming has
been game tree searches with the assistance of evaluation
functions (Schaeffer 2000). An evaluation function with this
approach should yield an evaluation value as an estimate of
the win probability for a given position. A popular way of
constructing an evaluation function is to make it a (linear)
combination of evaluation primitives called features, and ad-
just the weights of the combination.

However, it is difficult, for computers and people, to find
appropriate sets of features and their weights. As a result,
strong programs for many games including Chess still use
manually tuned evaluation functions. An individual can use
self-play with two evaluation functions to determine which
function is better. However, it is very time consuming to
obtain statistically significant results with self-play.

We propose a novel method of testing whether an exist-
ing evaluation function can be improved by incorporating a

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

new feature into it, as well as a method of tuning its weight,
by only using game records and the winner for each posi-
tion. The idea is to utilize the winning percentage in po-
sitions with the same evaluation value as win probability,
where the positions we use are stored in a large database of
game records. Calculating the winning percentage is com-
putationally inexpensive compared to self-play and to fea-
ture selection based on statistics (Guyon & Elisseeff 2003).

Win probabilities plotted against evaluation values form a
sigmoid curve, and we call these evaluation curves. They
may split depending on the properties of positions (e.g.,
whether the King is safe or not), and such splits indicate
that the evaluation function that is visualized needs a new
feature related to the properties. This visualization was con-
firmed to work well in our experiments on Chess, Othello,
Go, and Shogi. We can therefore improve evaluation func-
tions by incorporating such features and by adjusting their
weights, so that multiple curves will fit together as closely
as possible. Our experiments with self-play in Chess and
Shogi revealed that evaluation functions with split curves
were actually weak, and that automated adjustment success-
fully remedied this problem.

The paper is structured as follows. The next section re-
views related research and a new method of visualizing and
adjusting evaluation functions is then presented, followed by
the experimental results. Finally, conclusions are drawn and
future work is discussed.

Related Work

Much research has been devoted to the learning of evalua-
tion functions in game programming since Samuel’s seminal
work on Checkers (Samuel 1959). Supervised learning can
be effectively used to adjust weights, when appropriately la-
beled training positions are available. Supervised learning in
Othello produced one of the strongest programs then avail-
able (Buro 1998). However, no evaluation functions have
successfully been tuned in Chess and Shogi by directly ap-
plying supervised learning, due to the difficulty of mechani-
cally labeling the positions. There is a method based on the
correlation of preferences for positions in Chess (Gomboc,
Marsland, & Buro 2003). However, this requires many po-
sitions to be assessed by grandmasters to determine which
are preferred. Thus, its application is limited to domains in
which such assessments can be done. Our method requires

no positions to be labeled except for the winners.

Temporal difference learning is another approach to ad-
justing weights and has been successful with Backgammon
(Tesauro 1995). Learning variations have also been applied
to Chess (Baxter, Tridgell, & Weaver 2000). However, tem-
poral difference learning has not been adopted in top-level
programs for deterministic games. This also involves ad-
ditional computational cost to update the weights done by
playing numerous games. Our method requires no need for
extra play and is computationally efficient.

Programs in Go strengthened by Monte Carlo methods
have recently been dramatically improving (Bouzy & Helm-
stetter 2003; Kocsis & Szepesvari 2006). Although Monte
Carlo sampling may be useful for estimating the win proba-
bility in other games, it obviously requires vastly more com-
putation than our method.

Visualization and Adjustment

We can improve the existing evaluation function with our ap-
proach in the following way: (1) Draw evaluation curves for
positions with various properties. If multiple curves appear
(e.g., Fig. 1), they indicate that new features related to the
properties are needed. (2) Prepare a new evaluation function
with the new feature and draw the evaluation curves again.
Improvement is accomplished if they fit into one curve. The
weights of newly incorporated features can be automatically
adjusted, as will be explained in the latter half of this section.

Visualization of Evaluation Functions

We will first discuss how evaluation curves reveal a problem
with the evaluation function. The main idea is established on
the principle that a good evaluation function should assign
the same value to positions with the same win probability.
Let us look at how well this holds by plotting the relation in
graph form. The relation of win probabilities and evaluation
values is plotted with evaluation values along the horizontal
axis in Fig. 1 and the win probabilities along the vertical.
Of course, the evaluation curve of a good evaluation func-
tion must be monotonously increasing. However, this is not
sufficient to ensure that an evaluation function is sound.

Assume that we have an evaluation function only consist-
ing of a material balance in Chess, and that we separately
plot two evaluation curves first for all positions and then only
for positions where the opponent’s King is threatened. The
plotted evaluation curves will be split as seen in Fig. 1. The
solid curve is for all positions and the dotted curve is for
positions where the opponent’s King is unsafe. The reason
for the split is that if two positions have a similar material
balance, the position where the opponent’s King is unsafe
should have a greater probability of a win for his rival. Eval-
uation values are not reliable if there are such splits. For
example, assume that there are two positions X and Y, and
that position X is at B and Y is at A in the figure. Then, the
evaluation function incorrectly assigns a higher evaluation
value to Y even though X has a greater probability of a win.
Evaluation functions may generally assign values to differ-
ent scales depending on the conditions, and these values on
different scales are not comparable. We therefore propose

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10

all
unsafe

0.5
A

B

Evaluation Value

W
in

 P
ro

b
a

b
ili

ty

Figure 1: Example of a poor evaluation function

 0

 0.2

 0.4

 0.6

 0.8

 1

-6000 -4000 -2000 0 2000 4000 6000

W
in

 P
ro

b
a
b
ili

ty

Evaluation Value

All
Gold(B) = 4
Gold(W) = 4

0.5

Figure 2: Evaluation curves in Shogi (with four Golds)

that evaluation curves be plotted under various conditions
and then checked whether they split or not. We call a con-
crete proposition on a property of positions a condition. In
the above example, the threatened king is a property, and a
sample condition of the property is whether #attackers > 3.

Evaluation Curves with Game Records We need the win
probability for all evaluation values to be able to implement
our method. We approximate this with the winning percent-
age because of the difficulty of measuring the win probabil-
ity in a deterministic game. Assume that there are numerous
game records, R, that contain unbiased positions. Utilizing
R, we define the winning percentage as a function of evalu-
ation value v and R as

Win probability(v, R) =
|Wv (R)|

|Wv (R)| + |Lv (R)|
, (1)

where

Pv (R) = {p ∈ R|v −
δ

2
≤ eval(p) < v +

δ

2
}, (2)

Wv (R) = {p ∈ Pv (R)|winner(p) is the first player},

Lv (R) = {p ∈ Pv (R)|winner(p) is the second player}.

Here, p is a position in R and δ is a non-negative constant
standing for an interval, whose appropriate value depends on
the number of positions used and on the range of evaluation
values. We first compute the evaluation value for each po-
sition in the game records to compute this win probability.
We also determine the winner of all positions. Although it is
usually difficult to determine the theoretical winner of a po-
sition, we used that of a game record as the winner of all po-
sitions that appeared in the record. This worked sufficiently
well in our experience. Finally, we aggregate the numbers

of wins |Wv | and losses |Lv | for each interval [v − δ
2
, v + δ

2
),

and calculate the fraction using Eq. (1). It is occasionally
better to use values returned by a shallow quiescence search
in practice instead of a raw evaluation value in Eq. (2). This
depends on the characteristics of particular games and de-
tails on these are discussed in the next section.

We call an evaluation curve using all positions a total
curve. We call an evaluation curve using part of the posi-
tions for which a condition holds a conditioned curve. How
well the evaluation function is working under the conditions
can be found by comparing the total curve and conditioned
curves. For example, the solid curve in Fig. 2 indicates the
total evaluation curve obtained for Shogi (details explained
in the next section). The dotted (broken) curve is a condi-
tioned curve for the positions where the first (second) player
monopolizes four Golds.1 The “B” in the figures in this pa-
per denotes the first player and the “W” the second player.
We can actually observe a gap between the total curve and
conditioned curve in this figure under both conditions. Thus,
this evaluation function should incorporate a feature repre-
senting the monopolization of Gold.

Improving Evaluation Functions

Once we have found a condition whose conditioned curves
deviate from the total curve, we can design a new evalua-
tion function incorporating a new feature representing the
condition. Let p be a position, e(p) be an old evaluation
function, and e′(p) be a new evaluation function with a vec-
tor of weights, w. The new evaluation function with a new
feature, f , would be e′(p) = e(p)+w1 f (p), where the out-
put of the new feature, f (p), is 1 (-1) when the first (second)
player has four Golds in p and 0 otherwise for the previous
example of Shogi. See Eq. (3) and (4) of our experiments,
for more complex modifications to the evaluation function
of GPS Shogi.

We then need to carry out supervised learning to adjust
the newly incorporated weights. However, we do not have
appropriate evaluation values for positions used as training
examples. We therefore adjust the weights by optimizing the
prediction of win probability for the positions, which only
requires game records. Here, we introduce two methods,
i.e.,MLM and LS.

Because evaluation curves form a sigmoid as has been
confirmed by numerous experiments that will be discussed
later, it is acceptable to use logistic regression which maxi-
mizes the likelihood of training examples (MLM). Let g(p)
be the win probability of a position approximated by the

sigmoid transformation of e′(p): g(p) = 1
(1+exp(−w0·e′(p)))

.

The likelihood for a training position, pi , is defined as

likelihood(pi , yi) = g(pi)
yi (1 − g(pi))

(1−yi),

where yi denotes the winner of the i-th training position
whose value is 1 (0) if the winner is the first (second) player.
Finally, weights ŵ are determined so that the product of the
likelihood of each position is maximized:

ŵ = arg max
w

∏

i

likelihood(pi , yi).

As an alternative, weights can be determined with least
squares (LS) by minimizing the summation of the squared

1Because a Gold in Shogi is an important piece, it is empirically
known that the win probability of a player having all four Golds
tends to be higher than that usually predicted by a material balance.
Note that captured pieces can be reused in Shogi.

errors between yi and g(pi):

ŵ = arg min
w

∑

i

(yi − g(pi))
2.

Experimental Results
Let us first discuss how effective visualization was in the
experiments we did on Chess, Othello, Go, and Shogi, and
then the quality of evaluation functions adjusted with our
method of self-play in Chess and Shogi.

Game Programs and Game Records We will first ex-
plain the game programs and records we used in our exper-
iments. We used one of the best programs for each game to
ensure the experiments were meaningful and valid. We also
chose open source programs so that we could modify their
evaluation functions.
Chess: We worked with Crafty2 version 20.14. We used
45,955 positions made available by the International Corre-
spondence Chess Federation (ICCF3) as the game records.
We did not use records of draws to avoid complications with
determining the probabilities of wins.
Othello: We used Zebra4 which is a top-level Othello pro-
gram. We used 100,000 positions played at GGS5 as the
game records.
Go: We used GNU Go6 version 3.7.4 and 56,896 records
played on a nine-by-nine board at KGS.
Shogi: We used GPS Shogi7, which was a finalist at the
world computer shogi championship in 2005. We used
90,000 positions from the Shogi Club 24 as the game
records. We employed a checkmate search for Shogi in up
to 10,000 nodes for each position, from the first position to
the last in a record to determine the winner of each record.
If a checkmate was found, the player for the position was
determined to have won.

Evaluation Curves in Various Games

Here, we will present the evaluation curves for four games
and discuss practical issues. We omitted intervals that con-
sisted of fewer than 1,000 positions for all evaluation curves.

Figure 3 (left) plots the evaluation curves for Chess. We
focused on “King Evaluation” (KE), which is a feature used
in Crafty that estimates how safe the King is. The condi-
tions used were KE ≥ 50 or KE ≤ −50. We used two eval-
uation functions. The first was the original evaluation func-
tion for Crafty, and the second was a modified one whose
KE was intentionally turned off. We can see that the condi-
tioned curves with the turned-off version (plotted with black
and white squares) are vastly different from the total curve,
and that conditioned curves with the original version (plot-
ted with crosses and asterisks) are closer to the total curve.
The conditioned curves are also still not that close to the to-
tal curve in the original version. This is notable around a

2ftp://ftp.cis.uab.edu/pub/hyatt/
3http://iccf.com/
4http://radagast.se/othello/
5http://www.cs.ualberta.ca/˜mburo/GGS/
6http://www.gnu.org/software/gnugo/gnugo.html
7http://gps.tanaka.ecc.u-tokyo.ac.jp/{gpsshogi,osl}/ (rev.2602)

 0

 0.2

 0.4

 0.6

 0.8

 1

-600 -400 -200 0 200 400 600

W
in

 P
ro

b
a
b
ili

ty

Evaluation Value

All
KE >= 50 : Orig

KE <= -50 : Orig
KE >= 50 : woKE

KE <= -50 : woKE

 0

 0.2

 0.4

 0.6

 0.8

 1

-60 -40 -20 0 20 40 60

W
in

 P
ro

b
a
b
ili

ty

Evaluation Value

All
#disc >= 48
#disc <= 16

0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

-80 -60 -40 -20 0 20 40 60 80

W
in

 P
ro

b
a
b
ili

ty

Evaluation Value

GnuGo:All
0.5

Figure 3: Evaluation curves (left: Chess, with quiescence search, KE ≥ 50, center: Othello, number of stones, right: Go)

 0

 0.2

 0.4

 0.6

 0.8

 1

-600 -400 -200 0 200 400 600

W
in

 P
ro

b
a
b
ili

ty

Evaluation Value

All
King Evaluation >= 50

King Evaluation <= -50
0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

-6000 -4000 -2000 0 2000 4000 6000

W
in

 P
ro

b
a
b
ili

ty

Evaluation Value

All
Unsafety(B - W) >= 0.25

Unsafety(B - W) <= -0.25
0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

-6000 -4000 -2000 0 2000 4000 6000

W
in

 P
ro

b
a
b
ili

ty

Evaluation Value

All
Unsafety(B -W) >= 0.25

Unsafety(B - W) <= -0.25
0.5

Figure 4: Evaluation curves (left: Chess without quiescence search, KE ≥ 50, center: Shogi without quiescence search,
difference in KUs, right: Shogi with quiescence search)

Table 1: Results of adjusting weights in Chess
Method MLM LS Original

Bishop Evaluation 1.75 1.33 (1.00)

win probability of 0.5 and the evaluation values are less than
100. This means that there is a great deal of room to im-
prove the original evaluation function used in Crafty. The
graph suggests that an evaluation function should be so non-
linear that it returns at least -100 for positions where KE ≥
50. We used values returned by a quiescence search with
depth 1 in Chess, instead of the raw evaluation values in Eq.
(2). We will discuss the details later.

Figure 3 (center) plots the evaluation curves for Othello.
The broken (dotted) curve is an evaluation curve for posi-
tions that have more (less) than 47 (17) stones. Note that
around a win probability of 0.4, the gap between the two
curves amounts to 7, which is not at all negligible.

All the graphs in Fig. 2 and 3 confirm that evaluation
curves are sigmoid in various games including Go (see Fig.
3, right). We also found conditioned curves deviated from
total curves under various conditions in Shogi.

Importance of Quiescence Searches Most programs in
various games including Chess use quiescence searches be-
cause evaluation values are unreliable for tactical positions.
We used evaluation values as in game tree searches for
the leaves of principal variations obtained by a quiescence
search with depth 1 to draw Fig. 3 (left). Note that the
curves are monotonously increasing in the figure. Fig. 4
(left) shows an evaluation curve in Chess without a quies-
cence search, while the other configurations are the same
in the two figures. Here, the curves are, surprisingly, not
monotonously increasing. A comparison of both graphs sug-
gests that these fluctuations are caused by unreliable evalua-
tions of tactical positions.

Quiescence searches, in contrast, do not have as large
an impact on evaluation curves in Shogi, even though they
are also adopted by most Shogi programs. Figure 4 (cen-
ter) plots evaluation curves for Shogi without a quiescence
search, and Fig. 4 (right) plots curves with a quiescence
search with depth 8 based on the method used in KFEnd8

with additional consideration given to threats. They show
the conditioned curves for the condition where the differ-
ence of “King Unsafety” (KU) of the two players ≥ 0.25
(whose range is 0, 1). Here, “Unsafety (B-W)” is the dif-
ference between the KUs of the first player and that of the
second player. We can see that both evaluation curves are
quite similar. This suggests that the evaluation functions in
Shogi have more tolerance to tactical positions.

Quality of Adjustments in Chess

Here, we present the results of adjusting the weights in
Chess. Because we did not know what new features would
be incorporated into Crafty, we focused on existing features.
We turned off features by setting the weight to zero, and
then tested how well the weight was recovered with our
method. Figure 5 plots the evaluation curves for the feature
of “Bishop Evaluation” (BE), which evaluates the mobility
and development of Bishops. In all three graphs, the broken
(dotted) curve is an evaluation curve for the positions whose
BE is more (less) than or equal to 50. The graph at right is
for the original evaluation function of Crafty, and the graph
at left is for a modified one whose BE was turned off. We can
see that the conditioned curves differ from the total curve in
the graph at left. We then adjusted the weights of BE with
MLM and LS. The center graph in Fig. 5 plots the curves for
the evaluation function adjusted by LS. We can see that the
conditioned curves in the graph are much closer to the total
curve. Table 1 summarizes the weights adjusted by MLM

8http://www31.ocn.ne.jp/˜kfend/

 0

 0.2

 0.4

 0.6

 0.8

 1

-800 -600 -400 -200 0 200 400 600 800

W
in

 P
ro

b
a
b
ili

ty

Evaluation Value

All
Bishop Evaluation >= 50

Bishop Evaluation <= -50
0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

-800 -600 -400 -200 0 200 400 600 800

W
in

 P
ro

b
a
b
ili

ty

Evaluation Value

All
Bishop Evaluation >= 50

Bishop Evaluation <= -50
0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

-800 -600 -400 -200 0 200 400 600 800

W
in

 P
ro

b
a
b
ili

ty

Evaluation Value

All
Bishop Evaluation >= 50

Bishop Evaluation <= -50
0.5

Figure 5: Evaluation curve in Chess (left: without Bishop Evaluation, center: adjusted by LS, right: original Crafty)

Table 2: Results for self-play (wins - losses - draws)
Chess

MLM v.s. Turn off 31 - 11 - 30 MLM v.s. Crafty 18 - 22 - 32
LS v.s. Turn off 38 - 15 - 19 LS v.s. Crafty 16 - 18 - 38
Crafty v.s. Turn off 36 - 17 - 19

Shogi

MLM v.s. Orig. 52 - 28 - 0 MLM v.s. Hand 35 - 42 - 3
Hand v.s. Orig. 59 - 21 - 0

and LS in terms of relative values where the weight of the
original Crafty was 1.0.

We conducted 72 self-plays between programs before ad-
justment, two programs after adjustment, and the original
Crafty to find whether there were any improvements. Each
player was given 10 minutes per game. The results are sum-
marized in the upper half of Table 2. The programs after
adjustment (MLM and LS) had more wins than those be-
fore adjustment (Turned off) and they were statistically sig-
nificant with a significance level9 of 5%. Therefore adjust-
ments based on our method effectively improve the evalua-
tion functions. As there were no significant differences be-
tween the adjusted evaluation functions (MLM and LS) and
the original of Crafty, automatic was as effective as manual
adjustment.

Quality of New Evaluation Functions in Shogi

We introduced a new evaluation feature to Shogi, the differ-
ence in the “King’s Unsafety” (KU)s for both players.

The conditioned curves of the evaluation function in GPS
Shogi differ from the total curve as shown in Fig. 4 (cen-
ter), when there is a large difference between the KUs of
both players. We therefore prepared a new evaluation func-
tion and adjusted its weights with our methods. GPS Shogi
originally had two kinds of evaluation functions. The first
one was for the opening (eo) and for evaluating the material
balance, as well as the combination of pieces to take the de-
velopment of pieces into account. The second one was for
the endgame (ee) and for evaluating the relative positions of
the Kings and the other pieces. They were combined by a
progress rate pr whose range was 0, 1:

e(p) = (1 − pr) · eo + pr · ee. (3)

9These were measured with a program that took draws into ac-
count (http://groups.google.com/group/rec.games.chess.computer/
msg/764b0af34a9b4023, posted to rec.games.chess.computer).

Table 3: Results of adjusting weights in Shogi
w1 w2 w1 w2

MLM - 115 83 Hand - 125 50

 0

 0.2

 0.4

 0.6

 0.8

 1

-6000 -4000 -2000 0 2000 4000 6000

W
in

 P
ro

b
a
b
ili

ty

Evaluation Value

All
Unsafety(B - W) >= 0.25

Unsafety(B - W) <= -0.25
0.5

Figure 7: Evaluation curve in Shogi (difference in KUs, ad-
justed by MLM)

We then designed a new evaluation function that incorpo-
rated two new features, i.e., fa and fd :

e′(p) = (1 − pr) · eo + pr · (ee + w1 · fa + w2 · fd), (4)

where fa represents the difference in KUs measured using
attacking pieces and fd represents the difference measured
using the defending pieces. Here, the differences are multi-
plied by the rate of progress in e′(p) because it is empirically
known that such differences are of more importance near the
endgame. Equation (4) becomes equivalent to Eq. (3) when
its weights w1 and w2 are 0.

Table 3 compares the weights adjusted by MLM as well
as those manually adjusted. We can see that they have sim-
ilar values. The evaluation curves after adjusting them with
MLM are plotted in Fig. 7. (We have omitted manually
adjusted curves because they are very similar to those in
Fig. 7). The conditioned curves are much closer to the total
curves than those in Fig. 4 (center).

We conducted 80 self-plays between programs before ad-
justment and two programs adjusted by MLM and manually
to find whether there were any improvements. We used po-
sitions after 30 moves from the professional game records as
the initial positions for the self-plays. Each player was given
25 minutes per game. The results are summarized in the
lower half of Table 2. The program with the new evaluation
function (MLM) had more wins against the original program
(Orig.), and it was statistically significant with a significance
level of 5% in a binomial test. Adjustments based on our
method therefore effectively improved evaluation functions.
There were no statistically significant differences between
adjustments done by MLM and those done manually.

 0

 0.2

 0.4

 0.6

 0.8

 1

-6000 -4000 -2000 0 2000 4000 6000

W
in

 P
ro

b
a
b
ili

ty

Evaluation Value

All: professional
All: amateur

0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

-6000 -4000 -2000 0 2000 4000 6000

W
in

 P
ro

b
a
b
ili

ty

Evaluation Value

All
King Unsafety(B -W) >= 0.25

King Unsafety(B - W) <= -0.25
0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

-6000 -4000 -2000 0 2000 4000 6000

W
in

 P
ro

b
a
b
ili

ty

Evaluation Value

All
King Unsafety(B -W) >= 0.25

King Unsafety(B - W) <= -0.25
0.5

Figure 6: Evaluation curves in Shogi (left: amateur records v.s. professional records, center: before adjustment (professional),
right: after adjustment (professional))

Dependence on Game Records We conducted additional
experiments with professional game records. We used 603
records from the 59th Junisen, a professional championship
tournament in Shogi. Figure 6 (left) plots the total evaluation
curves for the professional records, as well as those for ama-
teur records (Shogi Club 24). Because there were an insuffi-
cient number of professional records, we used intervals con-
sisting of more than 100 positions and added error bars for
the confidence interval of 5%. We can see that the probabil-
ity of wins for the professional records increases more grad-
ually than that for the amateur records. This suggests that
difficult positions appear more often in professional game
records for computers.

Figure 6 (center) plots the evaluation curves for the orig-
inal evaluation function. Although the curves are not as
clearly sigmoid due to the limited number of the records,
we can see that the conditioned curves differ from the total
curve in the professional records, as well as in the amateur
records (Fig. 4). Figure 6 (right) plots the evaluation curves
for the new evaluation function adjusted by MLM in the pre-
vious section. The conditioned curves are much closer to
the total curves for the professional records, even though the
evaluation function was adjusted using the amateur records.
Evaluation functions adjusted by using amateur records are
thus also expected to be effective in professional records.

Concluding Remarks

We proposed a method of visualizing and adjusting evalua-
tion functions based on evaluation curves formed with eval-
uation values and win probability. We proposed the use of
win percentages in positions having the same evaluation val-
ues to approximate win probability, where the positions we
used were stored in a large database of game records.

Evaluation curves form a sigmoid and may split depend-
ing on the properties of positions, and such split curves indi-
cate that some features are missing in the evaluation function
that is visualized. Evaluation curves are therefore useful for
testing the effectiveness of new features related to split con-
ditions. We can improve evaluation functions with effective
new features once they are found. The computational cost
of visualization is much less than that with statistical tests or
self-play. Our experiments revealed that visualization works
well with major programs in Chess, Shogi, Othello, and Go.
We also proposed supervised learning of weights in evalua-
tion functions, so that split curves would fit the total curve.
The experiments with self-play in Chess and Shogi demon-

strated that evaluation functions with split curves were actu-
ally weak, and that automated adjustment successfully reme-
died the problem.

We manually choose the properties of positions to be
tested in evaluation curves at present using empirical knowl-
edge about the target game. Automating these is an interest-
ing topic for further research toward fully and automatically
generating evaluation functions. The experiments with qui-
escence searches also suggest that this visualization could
be extended to test the soundness of search algorithms.

Acknowledgment

We would like to thank Dr. Akihiro Kishimoto of Future
University-Hakodate and some anonymous referees for pro-
viding us with beneficial feedback on the paper.

References

Baxter, J.; Tridgell, A.; and Weaver, L. 2000. Learning to
play chess using temporal-differences. MACHINE LEARN-
ING 40(3):243–263.

Bouzy, B., and Helmstetter, B. 2003. Monte Carlo Go
developments. In Advances in Computer Games. Many
Games, Many Challenges, 159–174. Kluwer.

Buro, M. 1998. From simple features to sophisticated eval-
uation functions. In Proceedings of the First International
Conference on Computers and Games, 126–145. Tsukuba,
Japan: Springer-Verlag.

Gomboc, D.; Marsland, T. A.; and Buro, M. 2003. Eval-
uation function tuning via ordinal correlation. In the Ad-
vances in Computer Games Conference, volume 10, 1–18.

Guyon, I., and Elisseeff, A. 2003. An introduction to vari-
able and feature selection. Journal of Machine Learning
Research 3:1157–1182. Special Issue on Variable and Fea-
ture Selection.

Kocsis, L., and Szepesvari, C. 2006. Bandit based monte-
carlo planning. In Machine Learning: ECML 2006, volume
4212, 282–293. Springer.

Samuel, A. L. 1959. Some studies in machine learning
using the game of checkers. IBM Journal of Research and
Development 3(3):211–229.

Schaeffer, J. 2000. The games computers (and people)
play. Advances in Computers 50:189–266.

Tesauro, G. 1995. Temporal dfference learning and TD-
Gammon. Communications of the ACM 38(3):58–68.

