
LinUCB Applied to Monte Carlo Tree Search

Yusaku Mandai and Tomoyuki Kaneko

The Graduate School of Arts and Sciences, the University of Tokyo, Tokyo, Japan
mandai@graco.c.u-tokyo.ac.jp

Abstract. UCT is a standard method of Monte Carlo tree search (MCTS)
algorithms, which have been applied to various domains and have achieved
remarkable success. This study proposes a family of LinUCT algorithms
that incorporate LinUCB into MCTS algorithms. LinUCB is a recently
developed method that generalizes past episodes by ridge regression with
feature vectors and rewards. LinUCB outperforms UCB1 in contextual
multi-armed bandit problems. We introduce a straightforward applica-
tion of LinUCB, LinUCTPLAIN by substituting UCB1 with LinUCB in
UCT. We show that it does not work well owing to the minimax struc-
ture of game trees. To better handle such tree structures, we present
LinUCTRAVE and LinUCTFP by further incorporating two existing tech-
niques, rapid action value estimation (RAVE) and feature propagation,
which recursively propagates the feature vector of a node to that of its
parent. Experiments were conducted with a synthetic model, which is an
extension of the standard incremental random tree model in which each
node has a feature vector that represents the characteristics of the corre-
sponding position. The experiments results indicate that LinUCTRAVE,
LinUCTFP, and their combination LinUCTRAVE-FP outperform UCT,
especially when the branching factor is relatively large.

Keywords: MCTS, Multi-armed Bandit Problem, Contextual Bandit,
LinUCB

1 Introduction

UCT [13] is a de facto standard algorithm of Monte Carlo tree search (MCTS) [3].
UCT has achieved remarkable successes in various domains including the game
of Go [8].

For game tree search, UCT constructs and evaluates a game tree through a
random sampling sequence. At each time step, a playout involving Monte Carlo
simulation is performed to improve the empirical estimation of the winning ratio
at a leaf node and that of the ancestors of the leaf. For each playout, a leaf in the
game tree is selected in a best-first manner by descending the most promising
move with respect to the upper confidence bound of the winning ratio, UCB1 [1].
After it reaches the leaf, the score of the playout is determined by the terminal
position, which is reached by alternatively playing random moves. Therefore,
UCT works effectively without heuristic functions or domain knowledge. The
fact is a remarkable advantage over traditional game tree search methods based

on alpha beta search [12], because such methods require adequate evaluation
functions to estimate a winning probability of a position. Generally, the con-
struction of such evaluation functions requires tremendous effort [11].

Although UCT does not explicitly require heuristics, many studies have in-
corporated domain-dependent knowledge into UCT to improve the convergence
speed or playing strength, such as progressive widening [6], prior knowledge [10],
and PUCB [16]. Such approaches utilize a set of features, i.e., a feature vector,
which is observable in each state or in each move.

This study proposes a family of LinUCT as new MCTS algorithms. LinUCT
is based on LinUCB [15, 5], which has been studied in contextual multi-armed
bandit problem [4]. While UCB1 only considers past rewards for each arm, Lin-
UCB generalizes past episodes by ridge regression with feature vectors and re-
wards to predict the rewards of a future state. Thus, LinUCB is an alternative
means to incorporate domain knowledge in an online manner. We first intro-
duce LinUCTPLAIN by substituting UCB1 with LinUCB in UCT. However, this
straightforward application of LinUCB is not promising, because it does not
consider information in the subtree expanded under a node. To overcome this
problem, we present LinUCTRAVE and LinUCTFP, by incorporating two existing
techniques, rapid action value estimation (RAVE) [9] and feature propagation
that propagates feature vectors in a subtree to its root. We conducted experi-
ments with a synthetic model that is a variant of incremental random trees that
have served as good test sets for search algorithms [18, 14, 13, 7, 20]. We extend
the trees such that each node has a feature vector while preserving the main
property of the incremental random trees. The experiments demonstrate that
LinUCTRAVE, LinUCTFP, and their combination LinUCTRAVE-FP outperform
UCT, especially when the branching factor is relatively large.

2 MCTS and Algorithms in Multi-Armed Bandit
Problems

In the game of Go [2], minimax tree search does not work effectively because of
the difficulties in constructing heuristic evaluation functions. After the emergence
of a new paradigm, Monte Carlo tree search (MCTS), the playing strength of
computer players has been improved significantly in Go [8]. MCTS relies on a
number of random simulations according to the following steps [3].

1. Selection: Starting at the root node, the algorithm descends the tree to a leaf.
At each internal node, an algorithm for multi-armed bandit problems is em-
ployed to determine and select the move with the highest value with respect
to a given criterion. Here, we consider UCB1, UCB1RAVE, and LinUCB, as
the selection criteria.

2. Expansion: The children of the leaf are expanded if appropriate, and one
child is selected randomly.

3. Simulation: The rest of the game is played randomly. Typically, the game
consists of completely random moves; however, some studies have suggested

that a well-designed probability of moves yields improved performance [6,
17].

4. Back propagation: The result (i.e., win/loss) of the simulation is back-propagated
to the nodes on the path the algorithm descended in Step 1.

These steps are repeated until the computational budget (e.g. time) is exhausted.
Then, the best move, typically the most visited child of the root, is identified.

2.1 UCT

UCT (UCB applied to trees) is one of the most successful MCTS variants. In
the selection step at time t, UCT computes the UCB1 value [1] for move a of
node s as follows:

UCB1(s, a) = Xa +

√
2 lnNs

Na
(1)

where Xa is the empirical mean of the rewards of move a, and Ni is the number
of visits to the node or move i. Note that a position after a move is defined
without ambiguity in deterministic games. Thus, we use move a or the position
after move a interchangeably for simplicity. The best move converges to the same
move identified by a minimax algorithm under a certain assumption [13].

2.2 RAVE

RAVE is a remarkable enhancement to MCTS, particularly effective in Go [10].
It is a generalization of the All Moves As First (AMAF) heuristic, where AMAF
treats all moves in a simulation as if they were selected as the first move. When
RAVE is incorporated, the following interpolation UCB1RAVE is used as the
selection criterion:

UCB1RAVE(s, a) = β(s) RAVE(s, a) + (1− β(s)) UCB1(s, a) (2)

where RAVE(s, a) has a similar form as Eq. (1). Note that Xa and Na are
counted according to AMAF in Go. Thus, the RAVE value may become rapidly
a good estimate of the reward by incorporating various simulation results that

are not contained in UCB1 for Xa. The interpolation weight β(s) is
√

k
3Ns+k .

Therefore, the value of UCB1RAVE converges to that of UCB1 for large Ns, while
RAVE covers the unreliable prediction of UCB1 when Ns is small. Parameter k
controls the number of episodes when both terms are equal [9].

2.3 LinUCB

LinUCB is an algorithm for the contextual bandit problems [15, 5]. Here, a fea-
ture vector is observable for each arm, and it is assumed that the expected
reward of arm a is defined by the inner product between the feature vector xa

and an unknown coefficient vector θ∗
a; E[ra|xa] = x⊤

a θ
∗
a, where ra is the reward

Algorithm 1 LinUCB

Inputs: α ∈ R+

for t = 1, 2, 3, ... do
for all a ∈ At do ▷ At is a set of available arms at t

if a is new then
Aa ← Id×d ▷ d dimensional identity matrix
ba ← 0d×1 ▷ d dimensional zero vector

θ̂a ← A−1
a ba

pa ← x⊤
a θ̂a + α

√
x⊤
a A

−1
a xa

at ← arg max
a∈At

pa with ties broken arbitrarily

Observe a real-valued payoff rt
Aat ← Aat + xatx

⊤
at

bat ← bat + rtxat

of arm a. The LinUCB algorithm employs ridge regression to estimate θ∗
a using

the trials performed so far. The criterion in arm selection in LinUCB is expressed
as follows:

LinUCB(a) = x⊤
a θ̂a + α

√
x⊤
a A

−1
a xa, (3)

where θ̂a is the current estimate of θ∗
a, and A−1

a is the inverse of the variance-
covariance matrix for the regression on arm a. Constant α > 0 controls the
exploration-exploitation balance. With a probability of at least 1 − δ, the dif-
ference between the current estimate x⊤

a θ̂a and the expected reward E[ra|xa] is
bounded [15, 19] as follows:

|x⊤
a θ̂a − E[ra|xa]| ≤ α

√
x⊤
a A

−1
a xa, where α = 1 +

√
ln(2/δ)/2. (4)

Thus, the first term of the right side of Eq. (3) estimates the reward of arm
a, and the second term works as the confidence interval of the average reward.
Therefore, LinUCB calculates the upper confidence bound of the reward of each
arm, similar to UCB algorithms. Algorithm 1 describes the LinUCB algorithm,
which updates θ̂a via supplementary matrix A and vector b, at each time step.

Note that we introduce only the basic LinUCB framework for simplicity of
the paper. The authors of LinUCB also presented an extended framework in
which a feature vector models both a visiting user and an article available at
time t [15, 5].

3 LinUCT and Variants

In the original LinUCB, it is assumed that each arm a has its own coefficient
vector θ∗

a; therefore matrix Aa and vector ba are maintained individually. How-
ever, this configuration prevents LinUCB from generalizing information among
positions when we model a move as an arm in deterministic games. On the other

Algorithm 2 Supplementary Procedures in LinUCT

1: procedure LinUct-Initialize
2: A← Id×d

3: b← 01×d

4: procedure Back-Propagation-Added(path,∆)
5: for s ∈ path do
6: A← A+ xsx

⊤
s

7: b← b+∆sxs

hand, it is reasonable to assume that the expected rewards are under the con-
trol of a common θ∗, for all nodes in a searched game tree. Hereafter, we use a
common θ∗, matrix A, and vector b (without subscripts). This decision follows
the observation that a common evaluation function is used throughout search
by minimax-based methods.

3.1 LinUCTPLAIN: Basic LinUCT

Here we introduce LinUCTPLAIN, which is a straightforward application of Lin-
UCB to MCTS. In LinUCTPLAIN, the selection step described in Section 2 em-
ploys LinUCB with the following adjustment in counting the number of simula-
tions:

LinUCB’(s, a) = x⊤
a θ̂ + α

√
x⊤
a · Ns0

Na
A−1 · xa, (5)

where s0 is the root node of a given search tree.

Algorithm 2 shows the supplementary procedures used in LinUCTPLAIN.
Procedure LinUct-Initialize initializes the global variables A and b. After
each simulation, in addition to the standard back-propagation process of Ns

and Xs in MCTS, procedure Back-Propagation-Added updates variables A
and b for each node s in the path from the root using the result of a playout
∆. Variable ∆s is the relative reward of ∆ with respect to the player of s.
Consequently, matrix A is updated multiple times for each playout, while it is
updated exactly once in the original LinUCB. This makes the second term for
exploration in Eq. (3) too small too rapidly. Therefore, as in Eq. (5), we scale
the elements in matrix A by the total number of playouts divided by the number
of visits to the node.

3.2 LinUCTRAVE: LinUCB Combined with UCB1 in RAVE Form

A concern with LinUCTPLAIN is that it evaluates a node only by its static
feature vector. Consequently, the descendant node information is completely
ignored, which is apparently problematic, because in traditional minimax search
methods, the minimax value of as deep search as possible is preferable to a mere
evaluation function’s value for the root node.

Algorithm 3 Back-propagation process of LinUCTFP

1: procedure Back-Propagation-Added(path,∆)
2: for s ∈ path do
3: A← A+ xsx

⊤
s

4: b← b+∆sxs

5: p← parent of s
6: if p is not null then
7: xp ← (1− γ) xp + γ xs

LinUCTRAVE, a combination of LinUCB and UCB1, resolves this problem
by simply utilizing LinUCB as the RAVE heuristic function in Eq. (2).

LinUCBRAVE(s, a) = β(s) LinUCB’(s, a) + (1− β(s)) UCB1(s, a) (6)

The value converges to UCB1 value as the original RAVE presented in Eq. (2)
does. In addition, LinUCTRAVE makes the idea of RAVEmore domain-independent.
While the original RAVE assumes that the value of a move is independent of
move order in most cases in a target game. This assumption holds in Go; how-
ever, apparently it does not hold in chess. On the other hand, LinUCTRAVE can
be applied to any game where a positional feature vector is available.

3.3 LinUCTFP: LinUCB with Propagation of Features

LinUCTFP (feature propagation) is a completely different solution that consid-
ers subtrees. In LinUCTFP, by recursively propagating the feature vector of a
node to that of its parent, the LinUCB value calculated using Eq. (3) reflects
the expected rewards of playouts through the node. Algorithm 3 describes the
modified back-propagation process used in LinUCTFP, where γ ∈ (0, 1) controls
the learning rate of a feature vector. We also present LinUCTRAVE-FP, which
incorporates this propagation scheme into LinUCTRAVE.

4 Incremental Random Game Tree with Feature Vectors

Here we introduce an extension to existing random game tree models. Incremen-
tal random trees (or P-game) have served as domain-independent test sets for
evaluation of various search algorithms [18, 14, 13, 7, 20]. In this context, a ran-
dom value is assigned to each edge, and the game theoretical value of a leaf is
defined as the summation of the edge values in the path from the root. Moreover,
for an internal node, the same summation can serve as a heuristic score returned
by an evaluation function for that node. The advantages of this model are that
(1) the search space can be controlled easily via the width and height, and (2) a
correlation between the heuristic score of a node and that of its descendants is
produced, which is expected in real games. Here, we extend the trees such that
each node has a feature vector while preserving the main property of incremental
random trees.

(x1
m,x1

o) (x2
m,x2

o)

(x11
m ,x11

o)
(x12

m ,x12
o)

(x21
m ,x21

o)
(x22

m ,x22
o)

Fig. 1: Example of an incremental random tree with feature vectors.

0

200

400

600

800

1000

1200

1400

1600

1800

0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
re
q
u
en

cy

Expectations of reward

10-dim
20-dim
30-dim
40-dim
50-dim
60-dim
70-dim

Fig. 2: Reward distributions

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

10 20 30 40 50 60 70

V
a
ri
a
n
ce

Dimension of feature vector

Variance of the distributions
Fitting curve: e−0.2994d−0.9746

Fig. 3: Variance v.s. dimension

In our new trees, each tree has its own hidden d-dimensional vector θ∗ ∈ Rd,
which cannot be observed by search algorithms. In addition, each node in a tree
has two d-dimensional binary feature vectors (the one is for a player to move, and
the other for the opponent): xm,xo ∈ {0, 1}d. In MCTS, a leaf returns binary
reward r = {0, 1} for each playout, and the expected reward E(r) is defined by
these vectors as follows:

E(r) = (xm − xo)
⊤θ∗ + 0.5. (7)

Similarly, the inner product (xm − xo)
⊤θ̂ gives the estimation of reward in

LinUCB algorithms. This setting is equivalent to a Bernoulli multi-armed bandit
problem when a tree depth is one.

To model a move in a two-player game, the feature vectors of each child
(x′

m,x′
o) are computed using those of the parent (xm,xo). The feature vectors of

a child inherit those of the parent with changing their owners, i.e., x′
m = xo. This

swap of vectors models the zero-sum property. Then, with a fixed probability p,
each element (bit) is flipped. These flips correspond to changes in a board made
by a move. Figure 1 shows an example of our tree. The left child of the root has
feature vectors (x1

m,x1
o), and its left child has feature vectors (x11

m ,x11
o). These

vectors are similar to (x1
o, x

1
m). For integer i ∈ [0, d], the i-th element of x11

m has
the same or flipped value as that of the corresponding element of x1

o with the
probability p or 1− p, respectively.

Here we discuss some of the properties of our trees. We generated 100 trees
by varying the dimension d of features. Note that the width and depth of a tree
are fixed to 100 and 1, respectively. Figure 2 shows the histogram of the expected
rewards, and Figure 3 gives their variances with a fitted curve. As can be seen,
the distributions with higher dimension have a smaller variance. The reason

for this is that each element of θ∗ is randomly set in [−0.5/d, 0.5/d], to ensure
that the probability given in Eq. (7) is within [0, 1]. However, the difference in
variances may cause a problem because it is difficult for UCB algorithms to select
the best arm when the reward of the second best arm is close to that of the best
one. Therefore, we adjust the rewards according to the observed variances, and
use the following formula rather than Eq.(7):

E(r) = min(1.0,max(0.0,
(xm − xo)

⊤
θ√

e−3.24994d−0.9746/σ′2
+ 0.5)), (8)

where e is the base of the natural logarithm, and σ′2 is the desired variance. The
constants −3.24994 and −0.9746 come from the curve fitted in Figure 3. We
confirmed that this modification yields nearly the same distributions of rewards
for various dimensions d and that approximately 96% were in [0, 1] for σ′ = 0.5/3.

5 Experiments

We performed experiments with various configurations of artificial trees to eval-
uate the performance of the proposed algorithms (LinUCTPLAIN, LinUCTRAVE,
LinUCTFP, and LinUCTRAVE-FP) and UCT. These algorithms were investigated
in terms of regrets and failure rates following the experiments in the litera-
ture [13]. Regret R, which is the cumulative loss of the player’s selection, is a
standard criterion in multi-armed bandit problems. To fit in the range [0, 1], we
divide R by the number of playouts n and use the average regret per playout
R/n = µ∗ − 1/n

∑n
t=1 µit . Here, µ

∗ is the expectation of reward of the optimal
(maximum) move, and µit is the expected reward of the pulled arm it at time
t. For game trees, we defined µi for each child i of the root as the theoretical
minimax value of node i (i.e., the expected reward of the leaf of the principal
variation). The failure rate is the rate by which the algorithm fails to choose the
optimal move at the root. For each tree instance, each algorithm and each time
t, whether the algorithm fails is determined by whether the most visited move
in the root so far is the optimal move. By averaging them over tree instances,
we obtain the failure rate of each algorithm at time t.

Instances of trees were generated randomly as described in Section 4. The
parameter p for controlling the similarity between a parent and a child was
fixed to 0.1, while the dimension d of feature vectors was selected according the
number of leaves. In addition, we removed trees in which the optimal move is not
unique. Each MCTS algorithm grows its search tree iteratively until it covers all
nodes of the generated tree. All MCTS algorithms expand the children of a node
at the second visit to the node unless the node is a leaf of the generated tree.
For each playout, a move is selected randomly until it reaches the leaf. Then,
the reward is set randomly by the probability associated with the node given in
Eq. (8).

5.1 Robustness with Respect to Parameters

LinUCT algorithms depend on the parameters, i.e., exploration parameter α in
the LinUCB value in Eq. (3), k in LinUCBRAVE and its variants, and propagat-
ing rate γ for LinUCTFP. To observe the dependency of performance of LinUCT
algorithms on these parameters, we evaluated the combinations of various con-
figurations: for α, the values 1.0, 1.59, 1.83, and 2.22 were tested, where 1.0 is the
minimum value and the rest correspond to δ = 1.0, 0.5, and 0.1 in Eq. (4), re-
spectively. For k and γ, the values 100, 1000, and 10000 and 0.1, 0.01, and 0.001
were tested, respectively. To observe the dependence on the tree size, various
pairs of (depth, branching factor) were tested: (1, 256), (2, 16), (4, 4) and (8, 2).
Note that the dimension of feature vectors d was set to 8. Therefore each tree
has exactly 256 leaves; thus, LinUCB can distinguish leaves in ideal cases.

The top, middle, and bottom two panels in Figure 4 show the failure rates and
average regrets for each algorithm with varying α, k, and γ, respectively. Each
point represents the average over 100 trees. As can be seen, the constants α = 1.0,
k = 100, and γ = 0.01 are slightly better than others, although the differences
among the algorithms are more crucial than those between the parameters for
the same algorithm. Therefore, we used these parameters for the rest of our
experiments. Note that we only show the results for trees (4, 4), because, the
results obtained with different tree configurations were similar.

5.2 Comparison with UCT

We compared LinUCT algorithms to UCT, which is the standard algorithm in
MCTS. For this experiment, the depth of the tree was fixed to four, while various
branching factors (4-16) were used. Figure 5 shows the failure rates and regrets
for each algorithm, where each point (x, y) is the branching factor of trees for
x, and the average failure rate or regret over 100 trees at time 10,000 for each
algorithm for y. As expected, LinUCTPLAIN resulted in the highest failure rate
(i.e., worst performance) for most cases. UCT outperformed the others for very
small trees (e.g., branching factor four), LinUCTRAVE-FP performed better with
a branching factor of 5-9, and LinUCTFP achieved good results for trees with
a branching factor of greater than 12. These results suggest that LinUCTFP is
effective in games that have a relatively large branching factor. Figure 6 shows
that the failure rates and average regrets decreased along with an increased
number of playouts. The performance of compared algorithms is similar up to a
certain point; however, they differ substantially at time 10,000.

6 Conclusion

We presented a family of LinUCT algorithms that incorporate LinUCB into UCT
for tree search: LinUCTPLAIN, LinUCTRAVE, LinUCTFP, and LinUCTRAVE-FP.
LinUCTPLAIN is the simplest algorithm in which the LinUCB value is used rather
than the UCB1 value. However, there is room for improvement. Feature vectors

0.01

0.1

1

1 10 100 1000 10000 100000

F
a
il
u
re

ra
te

Number of playouts

LinUCT α = 1.00
LinUCT α = 1.59
LinUCT α = 1.83
LinUCT α = 2.22

LinUCTFP α = 1.00
LinUCTFP α = 1.59
LinUCTFP α = 1.83
LinUCTFP α = 2.22

0.001

0.01

0.1

1

1 10 100 1000 10000 100000

A
v
er
a
g
e
re
g
re
t

Number of playouts

LinUCT α = 1.00
LinUCT α = 1.59
LinUCT α = 1.83
LinUCT α = 2.22

LinUCTFP α = 1.00
LinUCTFP α = 1.59
LinUCTFP α = 1.83
LinUCTFP α = 2.22

0.01

0.1

1

1 10 100 1000 10000 100000

F
a
il
u
re

ra
te

Number of playouts

LinUCTRAVE-FP k = 100
LinUCTRAVE-FP k = 1000

LinUCTRAVE-FP k = 10000
LinUCTRAVE k = 100

LinUCTRAVE k = 1000
LinUCTRAVE k = 10000

0.001

0.01

0.1

1

1 10 100 1000 10000 100000

A
v
er
a
g
e
re
g
re
t

Number of playouts

LinUCTRAVE-FP k = 100
LinUCTRAVE-FP k = 1000

LinUCTRAVE-FP k = 10000
LinUCTRAVE k = 100

LinUCTRAVE k = 1000
LinUCTRAVE k = 10000

0.01

0.1

1

1 10 100 1000 10000 100000

F
a
il
u
re

ra
te

Number of playouts

LinUCTFP γ = 0.001
LinUCTFP γ = 0.010
LinUCTFP γ = 0.100

LinUCTRAVE-FP γ = 0.001
LinUCTRAVE-FP γ = 0.010
LinUCTRAVE-FP γ = 0.100

0.001

0.01

0.1

1

1 10 100 1000 10000 100000

A
v
er
a
g
e
re
g
re
t

Number of playouts

LinUCTFP γ = 0.001
LinUCTFP γ = 0.010
LinUCTFP γ = 0.100

LinUCTRAVE-FP γ = 0.001
LinUCTRAVE-FP γ = 0.010
LinUCTRAVE-FP γ = 0.100

Failure rate Average regret

Fig. 4: Effects by constants α, k, and γ: depth=4, width=4, d=8

observed for a node by the algorithm do not contain the information about
the structure of the subtree expanded thus far. To address the problem, we
incorporated existing techniques: a RAVE framework and feature propagation.
LinUCTRAVE combines LinUCB and UCB1 in a RAVE framework. LinUCTFP is
a modified version of LinUCTPLAIN in which the feature vectors of descendants
are propagated to ancestors. LinUCTRAVE-FP is a combination of LinUCTRAVE

and LinUCTFP.

Experiments were performed with incremental random trees to assess the pro-
posed algorithms in terms of the failure rates and regrets. In these experiments,
each random tree was extended to have its own coefficient vector and feature
vectors for each node, where the expected reward at each leaf is defined by the in-
ner product of the feature vector and the coefficient vector. The results obtained
with trees of a branching factor of 4-16 showed that LinUCTRAVE, LinUCTFP

and LinUCTRAVE-FP outperformed UCT, with the exception of small trees, and
LinUCTFP demonstrated the best performance with a branching factor greater
than 11.

0.1

1

4 5 6 7 8 9 10 11 12 13 14 15 16

F
a
il
u
re

ra
te

Branching factor

LinUCTPLAIN

LinUCTFP

LinUCTRAVE-FP

LinUCTRAVE

UCT

(a) Failure rate

0.01

0.1

4 5 6 7 8 9 10 11 12 13 14 15 16

A
v
er
a
g
e
re
g
re
t

Branching factor

(b) Average regret

Fig. 5: Comparison of LinUCT algorithms with UCT for various trees: depth=4,
d=16

0.1

1

1 10 100 1000 10000

F
a
il
u
re

ra
te

Number of playouts

LinUCT
LinUCTFP

LinUCTRAVE-FP

LinUCTRAVE

UCT

(a) Failure rate (width=4)

0.01

0.1

1

1 10 100 1000 10000

A
v
er
a
g
e
re
g
re
t

Number of playouts

LinUCT
LinUCTFP

LinUCTRAVE-FP

LinUCTRAVE

UCT

(b) Average regret (width=4)

0.1

1

1 10 100 1000 10000

F
a
il
u
re

ra
te

Number of playouts

LinUCT
LinUCTFP

LinUCTRAVE-FP

LinUCTRAVE

UCT

(c) Failure rate (width=10)

0.01

0.1

1

1 10 100 1000 10000

A
v
er
a
g
e
re
g
re
t

Number of playouts

LinUCT
LinUCTFP

LinUCTRAVE-FP

LinUCTRAVE

UCT

(d) Average regret (width=10)

Fig. 6: Performances of each algorithm (depth=4, d=16)

There are two directions for future work. The most important direction for
future work would be to examine the practical performance of the proposed
family of LinUCT algorithm with major games such as Go. The other interesting
direction is convergence analysis of the proposed LinUCT algorithms.

Acknowledgement

A part of this work was supported by JSPS KAKENHI Grant Number 25330432.

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine learning 47(2-3), 235–256 (2002)

2. Bouzy, B., Cazenave, T.: Computer Go: An AI-oriented survey. Artificial Intelli-
gence 132(1), 39–103 (2001)

3. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree
search methods. Computational Intelligence and AI in Games, IEEE Transactions
on 4(1), 1–43 (March 2012)

4. Bubeck, S., Cesa-Bianchi, N.: Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends in Machine Learning 5(1), 1–122
(2012)

5. Chu, W., Li, L., Reyzin, L., Schapire, R.E.: Contextual bandits with linear pay-
off functions. In: Gordon, G.J., Dunson, D.B., Dud́ık, M. (eds.) Proceedings of
the Fourteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2011. JMLR Proceedings, vol. 15, pp. 208–214. JMLR.org (2011)

6. Coulom, R.: Computing elo ratings of move patterns in the game of go. ICGA
Journal 30(4), 198–208 (2007)

7. Furtak, T., Buro, M.: Minimum proof graphs and fastest-cut-first search heuristics.
In: Boutilier, C. (ed.) Proceedings of the 21st IJCAI. pp. 492–498 (2009)

8. Gelly, S., Kocsis, L., Schoenauer, M., Sebag, M., Silver, D., Szepesvári, C., Teytaud,
O.: The grand challenge of computer go: Monte carlo tree search and extensions.
Commun. ACM 55(3), 106–113 (Mar 2012)

9. Gelly, S., Silver, D.: Combining online and offline knowledge in uct. In: Proceedings
of the 24th ICML. pp. 273–280. ACM (2007)

10. Gelly, S., Silver, D.: Monte-carlo tree search and rapid action value estimation in
computer go. Artificial Intelligence 175(11), 1856–1875 (2011)

11. Hoki, K., Kaneko, T.: Large-scale optimization for evaluation functions with min-
imax search. Journal of Artificial Intelligence Research pp. 527–568 (2014)

12. Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning 6(4), 293–326 (1975)
13. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Machine Learn-

ing: ECML 2006, pp. 282–293. Springer (2006)
14. Korf, R.E., Chickering, D.M.: Best-first minimax search. Artificial Intelligence 84,

299–337 (1996)
15. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to per-

sonalized news article recommendation. In: Proceedings of the 19th international
conference on World wide web. pp. 661–670. ACM (2010)

16. Rosin, C.: Multi-armed bandits with episode context. Annals of Mathematics and
Artificial Intelligence pp. 1–28 (2011)

17. Silver, D., Tesauro, G.: Monte-carlo simulation balancing. In: Proceedings of the
26th Annual ICML. pp. 945–952. ACM (2009)

18. Smith, S.J., Nau, D.S.: An analysis of forward pruning. In: AAAI. pp. 1386–1391
(1994)

19. Walsh, T.J., Szita, I., Diuk, C., Littman, M.L.: Exploring compact reinforcement-
learning representations with linear regression. In: Proceedings of the Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence. pp. 591–598. AUAI Press
(2009)

20. Yoshizoe, K., Kishimoto, A., Kaneko, T., Yoshimoto, H., Ishikawa, Y.: Scalable
distributed monte-carlo tree search. In: the 4th SoCS. pp. 180–187 (2011)

