
Automatic Feature Construction and Optimization
for General Game Player

Tomoyuki KANEKO Kazunori YAMAGUCHI
Satoru KAWAI

Graduate School of Arts and Sciences
The University of Tokyo

3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, JAPAN
{kaneko, yamaguch, kawai}@graco.c.u-tokyo.ac.jp

Abstract

In this paper, we describe our method that automatically
constructs evaluation functions without any human analysis
of a target game. Such automated constriction of evaluation
functions is crucial to develop a general game player that
can learn and play an arbitrary instance of a certain class
of games. Our approach is to construct features written in
logic programs from the game definition and translate them
into specialized evaluator in order to get such efficiency that
learning methods can try and test so many features that it
produces accurate evaluation functions. We also introduced
the decomposition of logical features calledthin featuresin
order to improve both accuracy and efficiency. Experiments
on Othello endgames show that the accuracy and efficiency
of evaluation functions generated by our method are ap-
proaching to those of the patten based evaluation function
which is the state-of-the-art technique.
keywords: automatic feature construction, logical feature

1 Introduction

1.1 Game playing programs and evaluation
functions

One of the most ambitious goals of artificial intelligence
research is the development of a general game player that
can learn and play an arbitrary instance of a certain class
of games. Game playing programs use a min-max search
method combined with evaluation functions that estimates
the probability to win (or preference to the player) of apo-
sition. Here, a position is an intermediate status of a match.
In order to develop strong players, both the accuracy and ef-
ficiency of the evaluation function are important. Since an
evaluation function is specific to a target game, the main is-
sue of developing general game players is how to construct
automatically evaluation functions without knowledge of

human experts.

1.2 Learning evaluation functions

The popular way to automatically construct an evaluation
function is to make it some combination (such as a linear
combination) of evaluation primitives calledfeatures, and
adjust the parameters of the combination [2]. In most of re-
searches, the features have been provided by human experts
of the game. The fully automated generation of appropriate
features is known to be a difficult task.

Among few works on the automatic generation of fea-
tures, we found Fawcett’s work [3, 4] most promising. In
the work, feature is represented by Horn Clause in the first-
order logic. We call the clause in such uselogical fea-
ture. His system can generate features by syntactic transla-
tion of logic programs using just only the definition of the
game. However, logical features prohibitively cost on posi-
tion evaluation, and thus the method was not practical until
now.

Recently, Buro developed a pattern based method [2] and
generated good evaluation function used in the strongest
programs in Othello. In the method, the feature is Boolean
conjunction ofatomic featuresthat are a state of a square
when it is applied to Othello. The method is very practi-
cal because the use of exclusive set of configurations called
pattern as well as the representation itself make position
evaluation and learning very efficient. However, choosing
appropriate patterns requires the knowledge of the impor-
tant shapes in Othello. Such knowledge is not available to
general game players.

1.3 Our approach

We adopted the approach of Fawcett because a logical fea-
ture allows a uniform description of rules, a goal, and po-
sition of a game, and is suitable for automatic construction.
However, the problem is the cost of position evaluation. We
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solved this problem by the combination of techniques: par-
tial evaluation, Boolean network with counters, and incre-
mental propagation [8, 6]. The effectiveness of the solu-
tion is demonstrated by experiments. We developed a tech-
nique ofdecompositionof logical features intothin features
which improves efficiency further. These speedups enabled
the learning method to use and test much more features to
produce more accurate evaluation functions.

This paper is organized as follows. The next section
briefly reviews the definitions of logical features and Sect.
3 describes the technique for efficient position evaluation
with them. Sect. 4 describes a basic idea of decomposition.
Sect. 5 shows the experimental results in Othello and Sect.
6 concludes this paper.

2 Logical Features

We uniformly describe positions, features and the rules of
the game in the first-order logic. Because the first-order
logic is a logically well-founded language, the adoption is
quite natural. This representation is general and can be ap-
plied to most games; The original work by Fawcett [3] is on
Othello and a single-agent search problem, Pell used it in
symmetric chess like games [10] and Kaneko applied it to
Tsume-Shogi [7]. This section focuses on how to compute
the values of features defined in the first-order logic. See
Fawcett [3] for more details and for the way of automated
construction of features.

2.1 Definition of positions

A position, which is an intermediate status of a match, is
described by a set of facts. A fact is a clause without body.
Such facts are redefined when a position changes according
to the progress of a match.

In Othello,owns andblank represent a position. For
example, the facts defined in the initial position in Othello
and the position after black played c4 are shown in Figure 1.
Here, we usex for black, and useo for white. In the initial
position, owns(d5,x) , owns(e4,x) , owns(d4,o) ,
owns(e5,o) are defined for squares with a disc. Also
blank is defined for each empty squares.

2.2 Definition of features

A feature is represented by Horn Clause in the first-order
logic. The following is an example of a logical feature writ-
ten in Prolog notation.1

f(A):-owns(x,A). % pieces for black

1It is written as f2(Num):-count([A],(owns(x,A)),Num)
in the work by [3]. In this paper, we assume counting as the default se-
mantics of logical features and omit the predicate “count”.
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owns(d5, x). owns(e4, x). owns(c4, x), owns(d4, x).

owns(d4, o). owns(e5, o). owns(d5, x). owns(e4, x).

owns(e5, o).

blank(a1). blank(a2). blank(a3)... blank(a1). blank(a2). blank(a3)...

Figure 1: Othello initial position (left) and a position after
black played c4 (right). Facts below each board define a
position.

We call the bindings of constants to variables which make
the clause truesolutionsof the logical feature and the num-
ber of the bindingsvalue of the logical feature. In the
above example,A is a variable,owns is a predicate which
means that the black player owns squareA. So, the value of
this featuref(A) means the number of squares currently
owned by black.

In the initial position shown in Figure 1 (left), the so-
lutions of f(A) are{d5,e4 } and the value is two. In a
position after black played c4 shown in Figure 1 (right), the
solutions off(A) are{c4,d4,d5,e4 } and the value is
four.

2.3 A domain theory

A domain theoryis the specification of the game, which is
described by a set of Horn Clauses that specify the rules of
the game and the goal conditions. While facts represent-
ing a position would change according to position change,
the definition of the domain theory is invariant through
matches. As an example in Othello, we use a domain theory
shown in Appendix A in this paper.

2.4 Position evaluation

As a position changes according to the progress of a
match, solutions of predicates which depend on a posi-
tion will change. In the example shown in Appendix A,
neighbor andsquare represent the board topology and
never change throughout matches.Owns/2 andblank/1
represent the discs in the squares in a position.Le-
gal move/2 is a predicate that (indirectly) depends on
a position.

Because a logical feature includes predicates which de-
pend on a position, it is required to efficiently calculate their

2



solutions in order to evaluate a position by logical features.

3 Efficient Position Evaluation with
Logical Features

This section describes our method that efficiently evaluate
positions with logical features. The method improved effi-
ciency more than 4,000 times compared to naive interpre-
tation by deductive databases [13] or by Prolog.

The outline of the method is as follows. First, given fea-
tures are translated into the equivalent set of ground clauses
(i.e., clauses without variables) by partial evaluation. Then,
they are folded into a Boolean network where incremen-
tal calculation on the network can efficiently compute the
solutions of the features.

3.1 Partial evaluation

First, in order to transform given features into the equiv-
alent set of ground clauses, two operations,unfoldingand
pruning in partial evaluation of logic programming [1], are
used.

3.1.1 Unfolding

Unfolding is an operation to replace a clauseA :- A1,
...,Ai , ..,An with clauses(A :- A1,. . ., Ai−1, B1,. . ., Bh,
Ai+1,. . .,An)θ j for B :- B1,. . .,Bh such thatBθ j = Aiθ j for
some substitutionθ j . In this paper, we apply the unfolding
from the left term to the right term in the depth first order.
For example, unfolding a clause

legal move(S,P):-square(S),bs(S,F,P).

with a factsquare(a1) will produce

legal move(a1,P) :- bs(a1,F,P).

for substitution[S/a1] .

3.1.2 Pruning

Pruning eliminates a clause whose body has no chance to
be true. Such type of clauses can be detected by the fact
that

1. its body has an unsatisfiable term, or

2. its body has a term not unifiable to any head of clauses,
or

3. its body has terms unifiable to the body of some in-
tegrity constraint.

legal move(a1,o) :-
blank(a1), owns(x,a2), owns(o,a3).

legal move(a1,o) :-
blank(a1), owns(x,b1), owns(o,c1).

legal move(a1,o) :-
blank(a1), owns(x,b2), owns(o,c3).

Figure 2: Partial result of unfoldinglegal move

legal move(a1, o) = (blank(a1)∧ owns(x, a2)∧ owns(o, a3))∨
(blank(a1)∧ owns(x, b1)∧ owns(o, c1))∨ (blank(a1)∧ owns(x,
b2)∧ owns(o, c3)) )

Figure 3: A part of propositional definition ofle-
gal move(a1,o)

In general, it is difficult to know that a given clause is
unsatisfiable. In order to simplify the task to prove that
a clause is unsatisfiable, we introduce integrity constraints
[12] so that we can say explicitly that some combination of
terms is unsatisfiable.

Appendix B shows an example of integrity constraints of
the game of Othello.Ic1 means that a square (Square )
cannot be blank and owned by some player at the same
time. Ic2 means that a square (Square ) cannot be owned
by both black and white players. These are some of the
specifications of Othello, although they have not been uti-
lized so far.

3.2 Translation into propositional logic

Our method performs unfolding and pruning repeatedly un-
til all the remaining clauses become ground so that they
have no variables in their head or body. A partial result of
unfolding legal move is shown in Figure 2. Since the
truth value of ground terms other than position definition
can be statically computed, the unfolded clauses have only
position definitions in their body.

A ground term can be treated as a Boolean variable. We
call a fact of position definition (such asowns(x,a1) )
input variableand call a head of unfolded clauses (such
as legal move(a1) ) output variable. A true output
variable corresponds to a solution of a feature. Each out-
put variable is a disjunction of conjunctions of input vari-
ables. Figure 3 shows a propositional definition ofle-
gal move(a1) .

3.3 Boolean networks

Propositional definitions of the features are folded into a
Boolean network.2 Each node in a network has its proposi-

2While we first proposed incremental calculation on Boolean tables in
[8], incremental propagation on a multi-layer Boolean network improved
efficiency further [6].
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blank(a1)

(x,a2) (o,a3) (x,b2)(ko,c1)(x,b1) (o,c3)

legal_move(a1,o)

a b c d e gf

abc ade afg

abc+ade+afg

owns owns owns owns owns owns

Figure 4: Network oflegal move(a1,o). We give a
nicknamea to g for each leaf, and writeab for a∧ b and
a+b for a∨b for brevity.

tion; a leaf has an input variable, and a non-leaf node has a
conjunction (we call such a nodeand-node) or disjunction
(we call such a nodeor-node) of the propositions of their
children. Figure 4 is a network of the proposition shown in
Figure 3.

3.3.1 Counters as Boolean values

Each non-leaf node has a counter in order to efficiently
compute the truth value of its proposition. Letdep(x) be
the children of a nodex, andcur(x) be a counter that shows
the number of the true children ofx. 3

cur(x) = |{c∈ dep(x)|val’(c) = T}| (1)

Here, val’(x) represent a truth value defined upon the
counter ofx.

val’(x)=





val(x) x is a leaf
cur(x)= |dep(x)| x is an and-node

cur(x) > 0 x is an or-node
(2)

whereval(x) is the truth value of the proposition of the node
x.

Property 1 For each nodex, the following equation holds.

val(x) = val’(x) (3)

Thanks to this property, we can compute the truth values
of all the output variables by adjusting counters of nodes.4

3.3.2 Incremental calculation

Figure 5 shows the breadth first algorithm that visit nodes
and adjust counters from lower to upper using a priority
queue. Breadth first processing is better than depth first
one because changes on lower variables may cancel out the

3|A| is the cardinality of a setA. T andF are the true and false respec-
tively.

4The proof of Property 1 is trivial [6].

1 for each n in modified leaf node
2 push n into the priority

queue with height 0

3 while the queue is not empty
4 pop the lowest node n from the queue
5 if n is a leaf node, or

val’(n) != previous-val’(n)
6 for each p ∈ n’s parents
7 if n becomes true
8 increment p’s counter;
9 else // n becomes false

10 decrement p’s counter;
11 if p is not in the queue
12 push p into the queue

with height h(p);

Figure 5: Incremental propagation of Boolean values

abc + cd

abc cd

a b c

ab + d + e

d

ab

x+e

ab+d (=x)

cx

a b c de e

Figure 6: Edge reduction by kernel extraction

change on upper variables. Each node remembers its pre-
vious valueprevious-valpin order to detect such cancel-
lation. For example, suppose thata becomesT where all
input variablesa to g wereF in the network shown in Fig-
ure 4. First,a is put into the queue at line 1 and popped at
the line 4. Each parent ofa, i.e., abc, adeanda f g, is put
into the queue after its counter is incremented. In the next
loop, abc is popped. The value ofcur(abc) (= 1) is not
equal todep(abc) (= 3), so the propagation stops here.

Property 2 The algorithm eventually terminates and
val′(p) = val(p) after the termination.

3.4 Efficiency and optimization

The computational cost of the algorithm can be estimated
by the number of adjustments of the counters. Because the
algorithm will go along at most once for each edge, the
worst cost is propositional to the number of edges. Ker-
nel extraction in logic optimization [11] can reduce edges
by network transformation. Figure 6 shows an example of
such transformation. While both networks represent two
propositionsabc+ cd and ab+ d + e, the right one has
smaller number of edges.
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f(a1) :- b1, b2.
f(a1) :- b2, b3.
f(a2) :- b3, b4.
f(a3) :- b1, b4.

=⇒
b1∧b2
b2∧b3
b3∧b4
b1∧b4

Figure 7: Decomposition of a logical featuref (left) into
four thin features (right)
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Figure 8: Histogram of the number of terms of the gener-
ated features after unfolding

4 Further Enhancements:
Thin Features

Buro showed in [2] that the use of the large number of sim-
ple features produces better evaluation function than that
of the small number of complicated features. As a simple
application of the policy into our framework, we introduce
thin featurethat is a conjunction of input variables. The
value of a thin feature is0 or 1 according to its Boolean
value. Decompositionis a syntactic operation that trans-
lates logical features into thin features by extracting bod-
ies of unfolded clauses. An example of decomposition is
shown in Figure 7.

Position evaluation can be efficiently performed by com-
posing Hasse diagram [5] on the partial order of thin fea-
tures and by using a slightly modified propagation method
described in Sect. 3. In this propagation, we can use depth
first algorithm because thin features do not contain disjunc-
tion.

It is said that using features that rarely match positions
tends to cause over-fitting and makes evaluation functions
unstable [2]. So, we select thin features that matches a suffi-
cient number of training positions. This selection improves
efficiency of position evaluation.
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Figure 9: Histogram of the time required for unfolding

5 Experimental Results

5.1 Evaluation Functions

We trained four evaluation functions with varying features
and compared the accuracy and efficiency of them. The
first group consists of ones using logical features described
in Sect. 2 and be evaluated with the method described in
Sect. 3.

A. The first one uses logical features shown in Appendix
C.1. They are slightly simplified version of the ones
shown in the work by Fawcett [3]. We take this as a
baseline of the evaluation .

B. The second one uses logical features selected among
more than ten thousands of automatically generated
ones. We applied feature generation rules [3] in
breadth first order to depth five, and generated about
53k features. Our program unfolded about10k of them
with about a month of computation. The histogram
of the size of generated features are shown in Figure
8. The horizontal axis shows the number of terms
in unfolded clauses in log-scale. Figure 9 shows the
histogram of the time required for unfolding. While
most features are small and quickly unfolded, there are
some prohibitively huge features that take much time
to unfold. By eliminating such features. the whole
computation can be finished in practical time. Then,
we chose about8k features that have relatively small
size. Finally statistically significant42features are se-
lected by F-test. They are shown in Appendix C.2

The next evaluation function uses thin features described in
Sect. 4.

C. The third one uses thin features translated from logical
features used in A.

The last one is a pattern based evaluation function.
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Table 1: Accuracy of evaluation functions

discs A B C D

60 r 0.67 0.85 0.88 0.94√
Ve 12.9 8.90 8.17 5.77√
V∗

e 14.9 9.64 8.90 6.02

55 r 0.74 0.74 0.81 0.89√
Ve 12.5 12.4 10.7 8.39√
V∗

e 14.6 14.0 12.5 9.25

D. The fourth one uses configurations in the standard
eleven patterns in [2]. They contain four to ten atomic
features. We take this evaluation in order to measure
the difference between our evaluation functions and
the one produced by the state-of-the-art techniques.

5.2 Training

All evaluation functions use linear combination and their
weights are adjusted by means of least mean squares so
that they predict the final score (the difference between the
number of black discs and that of white ones at the end of
the match after both players did the best). The weights of
evaluation functions A and B were determined directly by
solving covariance matrices and the weights of others were
iteratively adjusted by using a conjugate gradient method.
Training positions are extracted from IOS records.5 We se-
lected about306k positions after removing duplicate posi-
tions considering symmetry of geometry and players. Then
we used for training about4.8M positions expanding sym-
metric positions.

5.3 Accuracy of Evaluation Function

We tested the accuracy of evaluation functions by using
about50k positions extracted from matches played between
LOGISTELLO and KITTY.6 We removed about fifty po-
sitions in them that are also in training positions.

Table 1 shows the result wherer is the correlation coeffi-
cient, andVe is the variance of errors, andV∗

e is the variance
of errors measured for training instances. Figure 10 shows
the scatter plots between prediction (horizontal axis) and
real score (vertical axis). The real scores are determined by
using the full width search.

Comparing evaluation function A and B, we can see that
using features selected among large number of features
would produce more accurate evaluation function. Com-
paring evaluation function A and C, we can see that us-

5They are available atftp://external.nj.nec.com/pub/
igord/othello/ios/ .

6They are available atftp://external.nj.nec.com/pub/
igord/IOS/misc/ .

Table 2: The number of features
A B C D
18 42 3952 272032

Table 3: Efficiency of evaluation (k positions/sec.)

A B C D
3.18 0.872 86.6 104

ing thin features instead of logical features would produce
more accurate evaluation function.

5.4 Efficiency of Evaluation Function

We gathered about3M positions by df-pn+ search[9]. The
search started at positions with 49 discs which are extracted
from 23 matches in IOS records. Table 3 shows the aver-
age speed (kilo positions/sec.) of each evaluation function.
The number of features used in each evaluation function
is shown in Table 2. For the experiment, a computer with
933-MHz CPU Pentium III running FreeBSD is used and
the program is implemented in GNU C++.

Since evaluation function B uses much more complex
features than those of A as well as uses about twice number
of features, the speed is worse than A. Comparing A and C,
the use of thin features will improve the efficiency further,
though the speed still did not reach to that of D.

Buro reported in [2] that his program searches about
270k nodes in a second on 333-MHz CPU Pentium II PC
while our implementation of his algorithm only evaluate
about104k in a second on 933-MHz PC. This can be ex-
plained that in our implementation we avoid rigorous op-
timization. The weights in evaluation functions are repre-
sented as not integers but floating points. Also we do not
share weights among symmetrical features.

6 Concluding Remarks

In this paper, a method to construct practical evaluation
functions without human analysis of the game are de-
scribed, which is crucial to construct a general game player.
We showed that the accuracy and efficiency of generated
evaluation functions in Othello are approaching to those of
the pattern based evaluation function. Though still there is
a room for improvements, the difference is diminishing.

Moreover, preliminary experiments of decomposing log-
ical features into thin features showed improvement on both
accuracy and efficiency. We are now developing methods
utilizing thin features.
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Figure 10: Scatter-plots of prediction by evaluation functions (about 10k positions with 60 discs)
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A A Simple Domain Theory of 4x4
Othello

%%% Rules
legal move(Square, Player) :-

square(Square), bs(Square, FlipEnd, Player).
bs(S1,S3,P) :- blank(S1), opponent(P,Opp),

neighbor(S1,Dir,S2), span(S2,S3,Dir,Opp),
neighbor(S3,Dir,S4), owns(P,S4).

span(S1, S2, Dir, Owner) :- square(S1), square(S2),
player(Owner), owns(Owner, S1),
neighbor(S1, Dir, S3), span(S3, S2, Dir, Owner).

span(S, S, Dir, Owner) :-
square(S), player(Owner), owns(Owner,S),
direction(Dir).

%%% Dynamic Facts defined upon a position.
% owns(Player, Square).
% blank(Square).
%%% Static Rules
line(From,From,Dir) :- square(From), direction(Dir).
line(From,To,Dir) :-

neighbor(From, Dir, Next), line(Next, To, Dir).
%%% Static Facts
opponent(black, white). opponent(white, black).
direction(n).direction(ne).direction(e).direction(se).
direction(s).direction(sw).direction(w).direction(nw).

square(a1). square(a2). square(a3). square(a4).
...
square(d1). square(d2). square(d3). square(d4).

neighbor(a1, s, a2). neighbor(a2, n, a1).
neighbor(a2, s, a3). neighbor(a3, n, a2).
...
neighbor(d4, nw, c3).
neighbor(c4, ne, d3). neighbor(d3, sw, c4).
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%%% ‘‘goal-regression’’ feature generation rule
%%% required some predicates.
span star(Begin,End,Dir,Owner) :-

span(Begin,End,Dir,Owner).
span star(Begin,Begin,Dir,Owner) :-

square(Begin),direction(Dir),player(Owner).
span with subspan(Begin,End,Dir,Owner) :-

span star(Begin,MS,Dir,Owner), blank(MS),
opponent(Owner,Opp), neighbor(MS,Dir,Next),
span(Next,Next2,Dir,Opp),
neighbor(Next2,Dir,BSend), owns(Owner,BSend),
span star(BSend,End,Dir,Owner).

B Integrity Constraints of Othello
ic1(Square) :- blank(Square), owns( Player,Square).
ic2(Square) :- owns(black,Square), owns(white,Square).

C Features Used in Experiments

C.1 Features generated by the Zenith system
discs_x(S) :- square(S), owns(x,S).
discs_o(S) :- square(S), owns(o,S).
moves_x(S) :- legal_move(S,x).
moves_o(S) :- legal_move(S,o).
axes_x(A,B,C) :- owns(x,A), bs(B,C,o), in_line(A,B,C).
axes_o(A,B,C) :- owns(o,A), bs(B,C,x), in_line(A,B,C).
aaas_x(S) :- owns(x,S), corner(S).
aaas_o(S) :- owns(o,S), corner(S).
pre_aaas_x(S) :- corner(S), legal_move(S,x).
pre_aaas_o(S) :- corner(S), legal_move(S,o).
% predecessor of frontier directions
pfd_x(C) :- blank(A), neighbor(A,C,D), owns(o,D),

neighbor(D,C,E), owns(x,E).
pfd_o(C) :- blank(A), neighbor(A,C,D), owns(x,D),

neighbor(D,C,E), owns(o,E).
% similar to Rosenbloom frontier
srf_x(A) :- blank(A), neighbor(A,C,D), owns(o,D),

neighbor(D,C,E).
srf_o(A) :- blank(A), neighbor(A,C,D), owns(x,D),

neighbor(D,C,E).
% similar to Rosenbloom empty
sre_x(E) :- blank(A), neighbor(A,C,D), span(D,E,C,o),

neighbor(E,C,F).
sre_o(E) :- blank(A), neighbor(A,C,D), span(D,E,C,x),

neighbor(E,C,F).
% similar to Rosenbloom empty
srse_x(A,C) :- blank(A), neighbor(A,C,D), owns(o,D),

neighbor(D,C,E).
srse_o(A,C) :- blank(A), neighbor(A,C,D), owns(x,D),

neighbor(D,C,E).

C.2 Selected features
score o(S):-owns(o,S). f10(S):-legal move(S,x).
f13(S):-legal move(S,o). f26(S, T):-bs(S, T,x).
f35(S,T,M):-legal move(S,x), bs(M,T,o), in line(S,M,T).
f39(S, T):-bs(S, T,o).
f140(S,D,T,U,M,Q):-owns(o,S), blank(M),

neighbor(M,D,Q), span with subspan(Q,T,D,o),
neighbor(T,D,U), owns(x,U), in line(S,M,T).

f143(S,D,T,U,M):-owns(o,S), blank(M),
neighbor(M,D,T), owns(o,T), neighbor(T,D,U),
owns(x,U), in line(S,M,T).

f162( T):-bs(S, T,x).
f265(S,D,T,U,M,Q):-owns(x,S), blank(M),

neighbor(M,D,Q), span with subspan(Q,T,D,x),
neighbor(T,D,U), owns(o,U), in line(S,M,T).

f268(S,D,T,U,M):-owns(x,S), blank(M),
neighbor(M,D,T), owns(x,T), neighbor(T,D,U),
owns(o,U), in line(S,M,T).

f287( T):-bs(S, T,o).

f421(S,D,T):-owns(o,S), line(S,T,D).
f1278(S,D,T,U,M):-owns(o,S), neighbor(M,D,T),

owns(o,T),neighbor(T,D,U),owns(x,U),in line(S,M,T).
f1316(S,D,T,U,M):-owns(o,S),blank(M),neighbor(M,D,T),

owns(o,T), neighbor(T,D,U), in line(S,M,T).
f1571(S,D,T,U,M,Q):-owns(o,S), blank(M),

neighbor(M,D,Q), span with subspan(Q,T,D,o),
neighbor(T,D,U), legal move(U,x),in line(S,M,T).

f1619(S,D,T,U,M):- owns(o,S), blank(M),
neighbor(M,D,T), owns(o,T), neighbor(T,D,U),
legal move(U,x), in line(S,M,T).

f1665(S,D,T,U,M,Q):-owns(o,S),blank(M),neighbor(M,D,Q),
owns(o,Q), neighbor(Q,D,T), owns(o,T),
neighbor(T,D,U), owns(x,U), in line(S,M,T).

f1884(S,D,Next,M):-owns(o,S), bs(M,T,x), line(M,S,D),
neighbor(S,D,Next), line(Next,T,D).

f2124(S,M):-legal move(S,x), bs(M,T,o), in line(S,M,T).
f2798(x,T):-legal move(S,x), bs(M,T,o), in line(S,M,T).
f2951(S,D,T,U,M,Q):-owns(x,S), blank(M),

neighbor(M,D,Q), span with subspan(Q,T,D,x),
neighbor(T,D,U), in line(S,M,T).

f2952(S,D,T,U,M):-owns(x,S),blank(M),neighbor(M,D,T),
owns(x,T), neighbor(T,D,U), in line(S,M,T).

f3196(x,D,T,U,M,Q):-owns(x,S), blank(M),
neighbor(M,D,Q),span with subspan(Q,T,D,x),
neighbor(T,D,U), owns(o,U), in line(S,M,T).

f3207(S,D,T,U,M,Q):-owns(x,S), blank(M),
neighbor(M,D,Q), span with subspan(Q,T,D,x),
neighbor(T,D,U), legal move(U,o), in line(S,M,T).

f3255(S,D,T,U,M):-owns(x,S), blank(M),
neighbor(M,D,T), owns(x,T), neighbor(T,D,U),
legal move(U,o), in line(S,M,T).

f3301(S,D,T,U,M,Q):-owns(x,S),blank(M),neighbor(M,D,Q),
owns(x,Q), neighbor(Q,D,T), owns(x,T),
neighbor(T,D,U), owns(o,U), in line(S,M,T).

f3504(S,D,T):-owns(x,S), line(S,T,D).
f3522(S,D,T,Next):-owns(x,S), bs(M,T,o), line(M,S,D),

neighbor(S,D,Next), line(Next,T,D).
f3881(S,D,T,U,M):-neighbor(M,D,T), owns(o,T),

neighbor(T,D,U), owns(x,U), in line(S,M,T).
f4166(S,D,T,U,M):-blank(M), neighbor(M,D,T),

neighbor(T,D,U), owns(x,U), in line(S,M,T).
f4176(S,D,T,U,M):-blank(M), neighbor(M,D,T),

legal move(T,o), neighbor(T,D,U), owns(x,U),
in line(S,M,T).

f4841(S,D,T):-legal move(S,o), line(S,T,D).
f4939(S,D,T,M):-owns(o,S),neighbor(M,D,S),line(S,T,D).
f4943(o,D,T):-owns(o,S), line(S,T,D).
f5041(o):-owns(o,S), in line(S,M,T).
f5672(o,T):-legal move(S,o), bs(M,T,x), in line(S,M,T).
f5702(S,D,T,M):-legal move(S,o), bs(M,T,x),

line(M,S,D), line(S,T,D).
f5732(S,D,T,U,M):-legal move(S,o), blank(M),

neighbor(M,D,T), owns(o,T),
neighbor(T,D,U), owns(x,U), in line(S,M,T).

f5825(S,D,T,U,M,Q):-owns(o,S), blank(M),
neighbor(M,D,Q), span with subspan(Q,T,D,o),
neighbor(T,D,U), in line(S,M,T).

f6070(D,T,U,M,Q):-owns(o,S),blank(M),neighbor(M,D,Q),
span with subspan(Q,T,D,o), neighbor(T,D,U),
owns(x,U), in line(S,M,T).

f6172(S,V,D,T,U,M,Q):-owns(o,S), blank(M),
neighbor(M,D,Q), owns(o,Q), neighbor(Q,D,V),
span with subspan(V,T,D,o), neighbor(T,D,U),
owns(x,U), in line(S,M,T).
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