
Compiling Logical Features into Specialized
State-Evaluators by Partial Evaluation, Boolean

Tables and Incremental Calculation

KANEKO Tomoyuki, YAMAGUCHI Kazunori, and KAWAI Satoru

Graduate School of Arts and Sciences
The University of Tokyo

3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, JAPAN
{kaneko, yamaguch, kawai}@graco.c.u-tokyo.ac.jp

Abstract. A good evaluation function is needed for a good game pro-
gram, and good features, which are primitive metrics of a state, are
needed for a good evaluation function. In order to obtain good features,
automatic generation of features by machine learning is promising. How-
ever, the generated features are usually written in logic programs, whose
evaluation is much slower than that of other native expressions due to the
interpretive evaluation of the logic programs. In order to solve this prob-
lem, we propose a method which constructs a specialized evaluator using
a combination of techniques: partial evaluation, Boolean tables, and in-
cremental calculation. It exhaustively unfolds logical programs until they
can be represented as simple Boolean tables. The constructed specialized
evaluator is efficient since it consults only these compiled tables. Exper-
iments with Othello showed that speed can be increased approximately
2,000 times.

1 Introduction

1.1 Evaluation Function and Features

In order to make computer players of games strong, an evaluation function of
possible states in a match plays a crucial role, and the automatic construction
of a good evaluation function is a challenging research goal. The popular way to
construct an evaluation function automatically is to make it a linear combina-
tion1 of evaluation primitives called features, and to adjust the parameters of the
combination[10] [3]. In most of this research, the features have been provided by
human experts of the game, and the automatic generation of features remains
an ambitious research goal.2R. Mizoguchi and J. Slaney

(Eds.): PRICAI 2000, LNAI
1886, pp. 72-82, 2000.
c©Springer-Verlag Berlin Hei-
delberg 2000

1 More complex mechanisms such as neural networks are often used as well.
2 Although we use two-player games as an example of search problems in this paper,

the proposed method can be directly applied to single- (and multi-) agent search
problems as well.

Compiling Logical Features into Specialized State-Evaluators 73

1.2 Logical Features

Among few works on the automatic generation of features, we found Fawcett[4][5]
most promising. In the work, a feature is represented by Horn Clause in the first-
order logic. We call the clause in such use logical feature.3

Because the first-order logic is a logically well-founded language and rules
of a game can be described in it, the adoption of the first-order logic as the
description of features is quite natural. This is an example of a logical feature.4

f(A):-owns(black,A). % PIECES FOR BLACK

We call the bindings of constants to variables which make the clause true solu-
tions of the logical feature and the number of the bindings value of the logical
feature. In the above example, A is a variable, owns is a predicate which means
that the black player owns square A. So, the value of this feature f(A) emits the
number of squares currently owned by black.

A logical feature allows a uniform description of rules, a goal, and states
of a game, and is suitable for automatic construction. However, its universality
makes the evaluation quite costly. We solved this problem by a new combination
of techniques: partial evaluation, Boolean tables with index, and incremental
calculation with counters. The effectiveness of the solution is demonstrated by
experiments.

This paper is organized as follows. The next section briefly reviews the prob-
lem and previous works and presents the main idea of our approach. Sect. 3
details our method. Sect. 4 shows the experimental results. Sect. 5 concludes
this paper.

2 Logical Feature Evaluation Problem

2.1 A Domain Theory and Dynamic Facts

Features consist of two types of predicates: those of a domain theory and those
defined for a state.

A domain theory is the specification of a game, which is described by a set
of Horn Clauses that specify the rules of the game and the goal conditions. The
domain theory is independent of matches.

A state is an intermediate status of a game, which is described by a set of
facts. A fact is a clause without body. A state changes according to the progress
of a match. Such facts are called dynamic facts.

3 It is also used in Metagame[8].
4 It is written as f2(Num):-count([A],(owns(black,A)),Num) in the work by [4]. In

this paper, we assume counting as the default semantics of logical features and omit
the predicate “count”.

74 T. Kaneko, K. Yamaguch, S. Kawai

2.2 State Change and Logical Feature Evaluation

As a state changes according to the progress of a match, solutions of predicates
which depend on dynamic facts change. We call such predicates dynamic rules.

An example of domain theory for Othello-4x4 is shown in Appendix A.
In the example, neighbor/3 and square/1 represent the board topology and
never change throughout matches. So, they are non-dynamic facts. Owns/2 and
blank/1 represent the stones in squares in a state. Since they change according
to the progress of matches, they are dynamic facts. Legal move/2 is a predicate
which depends on a state. So, it is a dynamic rule.

Because a logical feature often includes a component of dynamic rules, it is
required to efficiently calculate their solutions in order to evaluate the logical
feature.

2.3 Related Works

The evaluation of predicates is studied in a few fields under slightly different
contexts:

Logic Programming In the field of logic programming, the emphasis is on
the flexibility and the SLD-resolution is still the most popular way to find
a solution. For the complete enumeration of solutions, a technique called
tabling (or often called memorization) [9] is used.

Deductive Databases In the field of deductive databases[11], the emphasis is
on the complete enumeration of the solutions. Also, an incremental update
has been studied and is called materialized view maintenance[6].

Production Systems In the field of production systems[1], the emphasis is on
detecting a change in the truth values of rules in order to trigger events.
For such change propagation, the discrimination network has been studied
(RETE[7].)

2.4 Our Approach

For logical feature evaluation, we have to find out the number of solutions of
rules, and a complete enumeration is required. Therefore, we use the techniques
of the materialized view maintenance as a reference. The rules of a game often
depend on a state. For example, in the game of Othello, the rule span depends
on the owns where truth values depend on a state. The evaluation of such rules
cannot be accelerated by just materializing intentional databases. Since state
changes are usually not drastic for popular games, the true dynamic facts in
two different states tend to only slightly vary. In such cases, the incremental
maintenance technique of such materialized views can be useful.

In our approach, we use the partial evaluation technique[2] for speeding up
the evaluation of such rules. By repeatedly applying unfolding and pruning, we
can make each rule fully expanded until the body of the rule consists of dy-
namic facts only. Theoretically, the unfolding and pruning process may continue

Compiling Logical Features into Specialized State-Evaluators 75

infinitely, but, for the rules of popular games which have finite boards, it termi-
nates and produces fully expanded rules.

The RETE network[7] represents the dependency of rules on dynamic facts,
and it is often used for propagating a change in the truth values of dynamic facts
to changes in those of rules. The unfolding and pruning process is a symbolic
way to calculate this propagation process in advance in order to speed up the
evaluation.

Once we have a direct relation between rules and dynamic facts, we can
encode the relation in Boolean tables. Then, the incremental evaluation on the
tables can be sped up further by associating the tables with counters in order to
detect the crossing of marginal numbers of trues and falses and proper indexing.

In summary, our approach is a combination of techniques: partial evalua-
tion, Boolean tables with indices, and incremental calculation with counters. We
applied this approach to the game of Othello, and see that this combination
generates a specialized evaluator which is approximately 2,000-times faster than
the reference. So, we believe that this is the right combination of techniques and
is therefore worth further study.

3 Generation of Specialized Evaluator

In this section, we explain how we generate a specialized evaluator by the com-
bination of the techniques of the partial evaluation, Boolean tables, and incre-
mental calculation.

3.1 Partial Evaluation

First, given features are transformed into the equivalent set of ground clauses
(i.e., clauses without variables). Two operations, unfolding and pruning in partial
evaluation of logic programming[2] are used.

Unfolding Unfolding is an operation to replace a clause A :- A1, ..., Ai, .., An

with clauses (A :- A1, ..., Ai−1, B1, ..., Bh, Ai+1, ..., An)θj for B :- B1, ..., Bh such
that Bθj = Aiθj for some substitution θj . In this paper, we apply the unfolding
from the left term to the right term in the depth first order.

Pruning Pruning eliminates a clause whose body has no chance to be true.
Such type of clauses can be detected by the fact that

1. its body has an unsatisfiable term, or
2. its body has a term not unifiable to any head of clauses, or
3. its body has terms unifiable to the body of some integrity constraint.

In general, it is difficult to know that a given clause is unsatisfiable. In order
to simplify the task to prove that a clause is unsatisfiable, we introduce integrity

76 T. Kaneko, K. Yamaguch, S. Kawai

constraints so that we can say explicitly that some combination of terms is
unsatisfiable.

Appendix B shows an example of integrity constraints of the game of Othello.
ic1 means that a square (Square) cannot be blank and owned by some player
at the same time. ic2 means that a square (Square) cannot be owned by both
black and white players. These are some of the specifications of Othello, although
they have not been utilized in previous works.

Exhaustive Partial Evaluation Algorithm Our method performs unfolding
and pruning repeatedly until all the remaining clauses are grounded so that they
have no variables in their head or body.

Appendix A shows a sample predicate span which represents a consecu-
tive line of stones in Othello. In our strategy, terms are unfolded from left to
right: i.e., terms square(S1) and neighbor(S1,Dir,S3) are unfolded before
span(S3,S2,Dir,Owner) when the first definition of span is unfolded. Since all
variables in the term span(S3,S2,Dir,Owner) are bound in the prior process,
the partial evaluation of the term will stop after the unfolding operation is ap-
plied four times in this case, which is the size of the board. Finally, the exhaustive
partial evaluation on span produces the following clauses:

– span(a1,a2,s,black) :- owns(black,a1),owns(black,a2).
– span(a1,a3,s,black) :- owns(black,a1),owns(black,a2),owns(black,a3).

...
– span(a1,a1,s,black) :- owns(black,a1).
– span(a2,a2,s,black) :- owns(black,a2).

...

Generally speaking, this process of unfolding and pruning may continue for-
ever due to some recursively defined clauses. In the case of conventional games
with reasonable rules, however, it is easy to write features and a domain theory
so that this process stops, due to the finiteness of the number of squares and
satisfiable terms.

Property 1. The exhaustive partial evaluation terminates under the following
assumption.

1. The number of solutions of each dynamic fact is finite. Also, it is assumed
that they are bound by other terms which are placed to the left of dynamic
facts in each clause. For example, square(S1), player(Owner) bind the
solutions of owns(Owner, S1) in the first definition of span.

2. For each predicate, the solutions are finite and can be enumerated by the
SLD-resolution at any state. The leftmost term is selected in the SLD-
resolution.

Proof. First, it should be noted that the unfolding operation preserves solutions.
When one unfolding operation replaces a clause c in a program with a set of
clauses c1, ...cn, the original program and the new program with replaced clauses

Compiling Logical Features into Specialized State-Evaluators 77

have the same solutions for all goals. The pruning operation preserves solutions
as well.

Under the assumption (1), exhaustive unfolding of a clause c totally produces
clauses equivalent to nodes in the SLD-tree whose goal is the body of c.

Because of the assumption (2), such nodes are finite, the exhaustive partial
evaluation of a clause terminates after a finite number of clauses are produced.

ut
Therefore, this method cannot be applied to such games in which the num-

ber of the solutions of some dynamic fact is infinite. However, the board and
pieces are finite and the solutions of dynamic facts are also likely to be finite in
conventional games.

3.2 Boolean Tables

Each clause in the final set of clauses after successful exhaustive partial evalua-
tion has a ground head (span(a1,a2,s,black),) and a body which is a conjunc-
tion of dynamic facts (owns(black,a1)-owns(black,a2).) We decompose this
relationship into two tables: an and-table and or-table. The and-table represents
the relationship between the conjunction of dynamic facts and a dynamic fact,
and the or-table represents the relationship between a set of the conjunctions of
dynamic facts and a set of ground heads.

Table 1 shows a part of the and-table for exhaustively partially evaluated
clauses in Sect. 3.1. The and-table shows that a conjunction in the left column
becomes true if and only if all the dynamic facts with © in the same row are
true.

Table 1. A part of an and-table

dynamic facts
conjunction of dynamic facts owns(b,a1) owns(b,a2) owns(b,a3)

owns(b,a1)-owns(b,a2) © ©
owns(b,a2)-owns(b,a3) © ©

owns(b,a1)-owns(b,a2)-owns(b,a3) © © ©
∗’b’ stands for black.

Table 2 shows a part of the or-table for exhaustively partially evaluated
clauses in Sect. 3.1. The or-table shows that all the ground heads in the right
column are true if and only if any one of the conjunctions of dynamic facts in the
left column is true. Ground heads with the same set of conjunctions are gathered
and placed in a single row of the or-table.

3.3 Incremental Calculation

Counting In order to speed up the detection of conjunctions which change their
truth values, we associate each row in an and-table with a counter. The counter

78 T. Kaneko, K. Yamaguch, S. Kawai

Table 2. A part of an or-table

the set of conjunction the set of ground heads

{owns(b,a1)-owns(b,a2)} {span(a1,a2,s,b),span(a2,a1,n,b)}
{owns(b,a2)-owns(b,a3)} {span(a2,a3,s,b),span(a3,a2,n,b)}

{owns(b,a1)-owns(b,a2)-owns(b,a3)} {span(a1,a3,s,b),span(a3,a1,n,b)}
∗’b’ stands for black.

represents a number of true dynamic facts in the row, and it is incremented or
decremented when the related dynamic facts change their truth values. A con-
junction is true if and only if its associated counter has the same value as the
number of related dynamic facts. So, the change in the truth values of conjunc-
tions is promptly detected by adjusting their counters.

Similarly, a counter is associated with the set of ground heads in each row.
The counter represents a number of true conjunctions in the left column of the
row. Since a ground head is true if and only if any one of the related conjunctions
is true, the truth value of the head is promptly determined by checking whether
its associated counter is zero or not.

The standard indexing technique is employed to find out the related rows in
the and-table and or-table.

Difference Propagation Changes in the truth values of dynamic facts cause
changes in those of the ground heads. We compute them by the following incre-
mental algorithm. Suppose that dynamic fact P changes its value.

For each row in the and-table which is related to the dynamic fact P.

adjust the counter associated with the row.

if the conjunction becomes true ... (1)

find the rows in which the conjunction is included using the index.

then adjust the counters associated with the rows and

report the ground heads in the rows with counters

changing their value from zero to nonzero. ...(2)

if the conjunction becomes false ... (3)

find the rows in which the conjunction is included using the index.

then adjust the counters associated with the rows and

report the ground heads in the rows with counters

changing their value from nonzero to zero. ...(4)

We show an example. Suppose that dynamic facts {owns-a1-black, owns-
a2-black} are true in Table 1 and Table 2, and we delete {owns(black,a1)}
(makes owns(black,a1) false) and insert {owns(black,a3)} (makes owns(black,a3)
true). First, it is reported that owns(black,a1)-owns(black,a2) becomes false
at (3), and span(a1,a2,s,black) and span(a2,a1,n,black) become false at (4).
Then, it is reported that owns(black,a2)-owns(black,a3) becomes true at (1),
and span(a2,a3,s,black) and span(a3,a2,n,black) become true at (2).

Compiling Logical Features into Specialized State-Evaluators 79

4 Experimental Results

4.1 Time Efficiency

Experiments are performed on the game of Othello. We used a domain the-
ory which is a slightly simpler version than that which was used in the Zenith
system([4]).5

Table 3. Comparison of three methods in evaluation time

Method average (sec.) standard deviation states/sec

Our method (incremental) 0.027 0.0048 2186.7
Our method (from scratch) 0.13 0.0072 459.7
Deductive DB 114.4 4.98 0.536

Table 3 shows the relation between the evaluation methods and the evaluation
time. We applied three evaluation methods over 300 matches using 127 features.
The first evaluation method is the one proposed in this paper. The second eval-
uation method is identical to our method except that it is without incremental
calculation, i.e, for each state, all dynamic facts in the state are evaluated from
scratch. The last evaluation method is a bottom-up evaluation technique used in
the deductive databases[11]. 300 matches are extracted from the game records
of IOS6 consisting of 17931 states. Relatively simple 127 features are selected
manually from the ones generated automatically by the Zenith’s method. The
purpose of the selection is to perform slow evaluation by deductive databases so
as to finish in a reasonable time. For the experiment, a computer with 200-MHz
CPU Pentium Pro. running FreeBSD is used and the program is implemented
in GNU C++. As seen in the table, our method is about 2,000-times faster than
that used in the deductive databases. The merit of the incremental calculation
is in the factor of five. This efficiency is partly thanks to the efficient implemen-
tation language suitable for low-level operations such as counter adjustments.

It is said that top-level Shogi programs with relatively heavy evaluation func-
tions can examine more than 3,000 states in a second. It seems that this method
achieved almost the same efficiency. It is, however, difficult to compare them
directly, because the efficiency of evaluation functions strongly depend on what
they evaluate (what features they have).

Fig. 1 shows the dependency of the evaluation time on the number of fea-
tures. A point on the graph shows the mean evaluation time of a match and its
error-bar shows its standard deviation. The figure suggests that the evaluation
time increases almost linearly as the number of features increases, although it
actually depends on the methods for generating features. In this experiment, we
5 The original version is available at ftp://ftp.ics.uci.edu/pub/machine-learning-

databases/othello/.
6 They are available at ftp://external.nj.nec.com/pub/igord/othello/ios/

80 T. Kaneko, K. Yamaguch, S. Kawai

0.0

0.5

1.0

1.5

2.0

40 60 80 100 120 140 160 180

se
c.�

number of features

Our method (incremental)
Our method (from scratch)

Fig. 1. Dependency of the evaluation time on the number of features

employed the features selected randomly from automatically generated ones and
used a computer with 600-MHz CPU Pentium III running Linux. The matches
employed are the ones we used in the previous experiment.

4.2 Space Efficiency

Experiments are performed for the game of Othello with varying board sizes
in order to find out the space complexity of our approach. Table 4 and Fig. 2
show the number of clauses in the original domain theory, ground clauses after
exhaustive partial evaluation, and the size, that is the number of the rows of
the and-table and or-table. They show that the number of the clauses and the
size of the tables increase almost exponentially with respect to the number of
features.

Table 4 also shows the time required for exhaustive partial evaluation.

Table 4. Comparison of unfolded domain theories for various sizes of Othello

Othello 4x4 Othello 8x8 Othello 16x16

no. of clauses 129 513 2345
no. of unfolded clauses 6653 211101 6217082
no. of counters in and-table 2100 116940 4559737
no. of counters in or-table 773 8459 82570

time for unfolding 24.4 sec 2556.4 sec (about a week)

Compiling Logical Features into Specialized State-Evaluators 81

10

100

1000

10000

100000

1e+06

1e+07

0 5 10 15 20 25 30

nu
m

be
r

of
 e

le
m

en
ts

�

size of a game

#original clauses
#unfolded clauses

time for unfolding (sec)
#and-counters

#or-counters

Fig. 2. Comparison of unfolded domain theories for various sizes of Othello

5 Conclusion

In this paper, we proposed an evaluation method of logical features by combining
exhaustive partial evaluation, Boolean tables, and incremental calculation.

Experiments on features and a domain theory for the game of Othello showed
that the proposed method was 2000-times faster than the naive bottom-up eval-
uation method used in the deductive databases.

There is room for improvement in our method. The efficiency of the ex-
haustive partial evaluation depends on the order of terms to which unfolding is
applied. The automatic selection of the appropriate term to unfold is important
in order to reduce users’ efforts. For a more powerful description of features, we
would like to incorporate aggregation predicates such as maximum or minimum
in our method. These are our future works.

References

1. N. Bassiliades and I. Vlahavas. DEVICE: Compiling production rules into
event-driven rules using complex events. Information and Software Technology,
39(5):331–342, 1997.

2. A. Bossi, N. Cocco, and S. Dulli. A method for specializing logic programs. ACM
Transactions on Programming Languages and Systems, 12(2):253–302, 1990.

3. M. Buro. From simple features to sophisticated evaluation functions. In Proceedings
of the First International Conference on Computers and Games, pages 126–145.
Springer-Verlag, 1998.

4. T. E. Fawcett. Feature Discovery for Problem Solving Systems. PhD thesis, De-
partment of Computer Science, University of Massachusetts, Amherst, 1993.

5. T. E. Fawcett and P. E. Utgoff. Automatic feature generation for problem solving
systems. In D. Sleeman and P. Edwards, editors, Proceedings of the 9th Interna-
tional Conference on Machine Learning, pages 144–153. Morgan Kaufmann, 1992.

82 T. Kaneko, K. Yamaguch, S. Kawai

6. Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining
views incrementally. SIGMOD Record (ACM Special Interest Group on Manage-
ment of Data), 22(2):157–166, June 1993.

7. H. S. Lee and M. I. Schor. Match algorithms for generalized rete networks. Artificial
Intelligence, 54:249–274, 1992.

8. Barney Darryl Pell. Strategy Generation and Evaluation for Meta-Game Playing.
PhD thesis, University of Cambridge, 1993.

9. Konstantinos Sagonas, Terrance Swift, and David S. Warren. Xsb as an efficient
deductive database engine. ACM SIGMOD, 5:442–453, 1994.

10. A. L. Samuel. Some studies in machine learning using the game of checkers. ii -
recent progress. IBM Journal of Research and Development, 11(6):601–617, 1967.

11. Jeffrey D. Ullman. Prinsiples of Database and Knowledge-Base Systems, Volume
II:The New Technologies. Computer Science Press, Maryland, 1989.

A A Simple Domain Theory of 4x4 Othello

%%% Rules

legal move(Square, Player) :-square(Square),bs(Square, FlipEnd, Player).

bs(S1,S3,P) :- blank(S1), opponent(P,Opp), neighbor(S1,Dir,S2),

span(S2,S3,Dir,Opp), neighbor(S3,Dir,S4), owns(P,S4).

span(S1, S2, Dir, Owner) :- square(S1), square(S2), player(Owner),

owns(Owner, S1), neighbor(S1, Dir, S3), span(S3, S2, Dir, Owner).

span(S, S, Dir, Owner) :-

square(S), player(Owner), owns(Owner,S), direction(Dir).

%%% Dynamic Facts defined upon states.

% owns(Player, Square).

% blank(Square).

%%% Static Rules

line(From, From, Dir) :- square(From), direction(Dir).

line(From, To, Dir) :- neighbor(From, Dir, Next), line(Next, To, Dir).

%%% Static Facts

opponent(x, o). opponent(o, x).

direction(n). direction(ne). direction(e). direction(se).

direction(s). direction(sw). direction(w). direction(nw).

square(a1). square(a2). square(a3). square(a4).

...

square(d1). square(d2). square(d3). square(d4).

neighbor(a1, s, a2). neighbor(a2, n, a1). neighbor(a2, s, a3).

...

neighbor(d4, nw, c3). neighbor(c4, ne, d3). neighbor(d3, sw, c4).

B Integrity Constraints of Othello

ic1(Square) :- blank(Square), owns(Player,Square).

ic2(Square) :- owns(black,Square), owns(white,Square).

