
Locally Controllable Stylized Shading

Hideki Todo∗

The University of Tokyo
Ken-ichi Anjyo†

OLM Digital, Inc.
William Baxter‡

OLM Digital, Inc.
Takeo Igarashi§

The University of Tokyo

Figure 1: Comparison of conventional toon shading (leftmost image) with our result (remaining images). Edits were made at the three key
frames indicated: (left) added shaded area below left eye for expressive impact, (middle) deleted dark area around right eye, and (right)
added shaded area below nose to emphasize three-dimensionality. These local edits integrate seamlessly with the global lighting, animate
smoothly, and require no modification to the external lighting setup.

Abstract

Recent progress in non-photorealistic rendering (NPR) has led to
many stylized shading techniques that efficiently convey visual in-
formation about the objects depicted. Another crucial goal of NPR
is to give artists simple and direct ways to express the abstract
ideas born of their imaginations. In particular, the ability to add
intentional, but often unrealistic, shading effects is indispensable
for many applications. We propose a set of simple stylized shad-
ing algorithms that allow the user to freely add localized light and
shade to a model in a manner that is consistent and seamlessly inte-
grated with conventional lighting techniques. The algorithms pro-
vide an intuitive, direct manipulation method based on a paint-brush
metaphor, to control and edit the light and shade locally as desired.
Our prototype system demonstrates how our method can enhance
both the quality and range of applicability of conventional stylized
shading for offline animation and interactive applications.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction Techniques; I.3.7
[Computer Graphics]: Animation

Keywords: non-photorealistic rendering, stylized shading, direct
manipulation

∗e-mail: td-rg7@ui.is.s.u-tokyo.ac.jp
†e-mail: anjyo@olm.co.jp
‡e-mail: baxter@olm.co.jp
§e-mail: takeo@acm.org

1 Introduction

We consider the problem of how to provide users with intuitive,
fine-grained control over stylized light and shade on a 3D object.
Over the past decade, a variety of non-photorealistic rendering tech-
niques have been developed to facilitate visual interpretation of 3D
objects. Most of these techniques are designed to elucidate particu-
lar attributes inherent to the object. For example, Gooch and Gooch
[2001] developed a lighting model that changes hue to convey sur-
face orientation, edge locations, and highlights for 3D technical il-
lustration. The multi-scale shading method by [Rusinkiewicz et al.
2006] makes detailed 3D shape depiction at all frequencies possi-
ble.

On the other hand, in application fields such as digital animation
and video games, there is a significant demand for locally control-
lable stylized light and shade, which can achieve results that are
directable, intentional, and often fictive, yet ultimately more attrac-
tive for it. For example, the canonical cartoon shader used routinely
in 3D animation often creates undesirable shaded areas. These can
arise from the complexity of the underlying geometry or the com-
plexity of the lighting, or just as a result of the basic physics of
illumination. The left image in Figure 1 shows such an example,
where the dark area partly covers the right eye of the character. Di-
rectors would like to have the ability have such features removed
while retaining other dark areas. In other cases, they might like to
request that a shaded area be added below the left eye, as shown in
the second image from the left in Figure 1, in order to emphasize
the character’s fierceness. However, satisfying these diverse artistic
requirements simultaneously would be very hard or almost impossi-
ble using only existing conventional lighting control and/or by fine-
tuning the parameters used. Changing the geometry of the model
or animating textures or light maps might be helpful for achieving
this, but these are time-consuming and impractical on a production
schedule. Despite the crucial importance of such fine-grained artis-
tic control of stylized light and shade, very little research exists on
how to provide such control or suitable interactive techniques to
support it.

Our goal is to develop such “director-friendly” methodologies for
stylistic depiction of light and shade. To explain our approach more
concisely, we restrict the discussion for now to making 3D cartoon
animation. In this case, due to the nature of stylistic depiction, the
techniques used need not be physically realistic; however, they must

tody
Text Box
(c) ACM, 2007. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Graphics (TOG), Volume 26, Issue 3, Article No.17 (2007.7) http://doi.acm.org/10.1145/1276377.1276399

possess a certain sense of plausibility while meeting directorial
demands. This emphasis on expressiveness over physical-realism
implies that we must rely on the animator’s creativity–more than
automatic physically-based algorithms–to get a desired animation.
Therefore, a stylized shading approach should provide a simple,
intuitive user interface so that the animator can easily and interac-
tively translate his or her creative vision into reality. A keyframe-
based technique is appropriate, since it allows fine-tuning of stylis-
tic animation in a traditional, but convenient and familiar way for
animators. Additionally, real-time preview of the animation is also
indispensable. These basic requirements for making stylized ani-
mation have led us to consider naı̈ve key-framing as a first approach
towards a new methodology. The overall process of the approach
we propose is:

1. Begin by making an initial 3D scene, which includes the light-
ing and animation settings, using a conventional 3D software
tool.

2. At each keyframe, the user designs and/or modifies the shaded
area on a surface, using a paint-brush interface. This pro-
cess is performed at interactive rates, prescribing the bound-
ary constraint of the obtained area. Thereafter the new surface
brightness distribution is automatically generated considering
the boundary constraint.

3. The new surface brightness distributions at the keyframes are
automatically transmitted to all the frames by linear interpo-
lation. We thus obtain real-time preview of the stylistic ani-
mation.

The central idea of our approach is to effect the desired changes to
light and shade boundaries by modifying the Lambertian L ·N light-
ing term directly, adding a scalar offset function. This avoids the
need to manipulate light vectors and normals and can be efficiently
implemented using scalar-valued radial basis functions ([Wahba
1990]). The right images in Figure 1 are from an animation created
using our techniques, while the leftmost shows the scene before
modifications.

The rest of the paper is organized as follows. After briefly survey-
ing related work in section 2, we describe the main ideas underlying
the algorithms in section 3. In section 4, we describe some imple-
mentation details of our prototype system. Section 5 demonstrates
animation examples and discusses our results. We conclude with
some limitations and future work in section 6.

2 Related work

A number of NPR techniques, such as those in [Gooch and Gooch
2001], have been developed to emulate various stylistic appear-
ances. For stylized rendering of 3D objects, Lake et al.[2000]
proposed several fundamental real-time rendering techniques, in-
cluding a traditional cartoon shader. The Lit-Sphere method by
Sloan et al.[2001] can describe view-independent tone detail, us-
ing a painted spherical environment map. The WYSIWYG system
by Kalnins et al.[2002] allows direct drawing of strokes onto 3D ob-
jects, while learning strokes by example. The multi-scale shading
technique by Rusinkiewicz et al.[2006] can also control the appear-
ance of shape detail by tuning parameters of the lighting model.
Barla et al.[2006] proposed an extension of the traditional cartoon
shader, which can control view-dependent tone detail, including
such effects as aerial perspective and depth of field. The cartoon
highlight shader in [Anjyo et al. 2006] allows a user to directly
click-and-drag the highlights on a surface to design and animate
them.

Previous work on user-specified indirect lighting design for photo-

∂B0∩(D0-C0)
∂C0-B0

B0

C0

D0

paint operation

∂D0

∂C0

B0

o1(p)
d0

modified
(L･N+o1)

original
(L･N)

Figure 2: Modifying a shaded area B0 with the paint brush in-
terface: The resulting new area B0 ∪C0 can be represented func-
tionally by introducing an offset function that modifies the standard
L ·N lighting term. The bottom graph shows a 1-d intensity distri-
bution along the green line.

realistic scene rendering is to some extent related to our approach as
well. The design issue in photorealistic lighting is to find the light
placement that results in the user-specified highlights and shad-
ows in the scene (see [Lee et al. 2006] for more detailed discus-
sion). There exist several good approaches ([Schoeneman et al.
1993; Kawai et al. 1993; Pellacini et al. 2002], for instance). The
geometry-dependent lighting method by [Lee et al. 2006] may also
be a useful indirect light design tool for visualizing scientific data.
Okabe et al.[2006] and Akers et al.[2003] take other approaches
to modifying lighting, providing an intuitive painting method for
modifying the illumination of 3D models.

Our approach is inspired by all of the above methods. However,
ours is unique in that it allows a user to add light and shade by
painting them directly onto 3D objects without elaborate lighting
control, to make stylistic animation by key-framing. In addition,
we demonstrate that continuous tone detail can also be painted and
animated as an extension of our approach.

3 Algorithm

3.1 Overall process

We begin by restricting ourselves to 3D cartoon animation, where
each shaded area is assigned a uniform color by thresholded Lam-
bertian shading ([Lake et al. 2000]). Starting from a 3D scene cre-
ated using conventional lighting and key-framing techniques, we
consider how to locally add light and shade onto surfaces. In par-
ticular, we describe how to use a paint-brush metaphor to design the
shaded area at keyframes. The painting process at a given keyframe
involves interactively adding light and shade details or sculpting the
shapes of shade boundaries. Such editing is straightforward with
our technique, while it would be very time-consuming and difficult
to manage using conventional lighting.

Our implementation is capable of dealing with deforming geometry
and multiple directional and/or point light sources; however, with-
out loss of generality, we explain our idea below in the context of

a single light source. The extension to deformations and multiple
light sources is straightforward. For a given threshold 0 < d0 < 1 a
thresholded Lambertian shader creates two (possibly disconnected)
regions, which we will call the light and dark areas. More precisely,
using set notation we define the light area B0 on a surface S, for a
given threshold d0 to be:

B0 := {p ∈ S | L(p) ·N(p)≥ d0}, (1)

where L(p) and N(p) are the unit vectors representing the light
direction and surface normal at a point p on S, respectively. The
boundary between light and dark areas is obtained by replacing in-
equality (≥ d0) with equality (= d0) above. We will refer to the dot
product L(p) ·N(p) in (1) as the intensity distribution. Given these
definitions, let us consider how to enlarge a portion of the light area,
for example on the character’s face in Figure 2, where the light area
B0 is flesh colored. Let the area C0 with boundary ∂C0 (drawn
in red in Figure 2) be an area painted with our brush-type interface
(see the next section for specifics). The area C0−B0 is the area that
the user wishes to add to the original area B0. The core idea behind
our approach is to modify the intensity distribution in order to make
the light area change as desired, i.e. so that it becomes B0∪C0. The
intensity distribution is a scalar function, so this greatly simplifies
the problem when compared to working directly with light vectors
and normals. The overall strategy is as follows. We first construct
an offset function o1(p) defined globally on S. This prescribes the
new light area by replacing the original intensity distribution in (1)
with L(p) ·N(p) + o1(p)(see Figure 2). Note that, though glob-
ally defined, the offset function should be mostly zero except in the
region immediately surrounding the desired edit.

After making a modification at one keyframe, we can create a dif-
ferent offset function to define the light area at a second keyframe.
By smoothly interpolating the offset functions between keyframes,
we can achieve smooth animation of the light areas between frames
as well. The procedure can be repeated for every pair of adjacent
keyframes, resulting in an animated light area on S using just local
edits with a paint-brush.

3.2 The offset function and key-framing

Next, we describe how to construct the offset function for a
“painted” light area. Given the original light area B0 from (1) and
the painted area C0, as shown in Figure 2. The offset function o1(p)
for B0∪C0 should satisfy

B1 := {p ∈ S | L(p) ·N(p)+o1(p)≥ d0}= B0∪C0, (2)

where o1(p) is generated when the user finishes drawing C0. To
fulfill condition (2), it is clear that the offset function should take
values that are equal to d0−L(p) ·N(p)(≥ 0) on the new boundary
∂C0 −B0. On the other hand, to make the offset function “ac-
tive” only in the neighborhood of C0, we wish to have an area D0,
which includes C0, that limits the extent of the domain where mod-
ifications to the lighting are applied (see Figure 2). In our current
implementation, the distance between ∂D0 and ∂C0 is controlled
by a slider in the user interface. The size of this region gives the
user a way to limit the scope of modification (also see the detail in
section 5). Therefore o1(p) should minimally satisfy the following
conditions:

o1(p)=
{

0 p ∈ (S−D0)∪ (∂B0∩ (D0−C0))
d0−L(p) ·N(p) p ∈ ∂C0−B0

(3)

If we choose for o1 a continuous function satisfying the above con-
ditions, then the resultant area B1 will have a continuous bound-
ary. We can consider the new shaded area B1, to have a “general-
ized” intensity distribution given by L(p) ·N(p)+o1(p), instead of

∂Bk∩(Dk-Ck)
∂Ck-BkBk

Ck

Dk

∂Dk

∂Ck
xi

pm
pn

xj

Figure 3: The boundary constraint points used in finding the new
offset function ôk+1(p). The orange points {xi} take the value d0−
L ·N, while the blue points are constrained to ok(p).

L(p) ·N(p). The above procedure can be repeated for each stroke,
building upon the offset function created by the previous stroke.
The user’s kth stroke provides Ck and Dk. From this new input, the
resulting light area can be defined recursively as:

Bk+1 := {p ∈ S | L(p) ·N(p)+ok+1(p)≥ d0}= Bk ∪Ck, (4)

where we assume that ok+1(p) is a continuous function satisfying
the constraints:

ok+1(p)=
{

ok(p) p ∈ (S−Dk)∪ (∂Bk ∩ (Dk−Ck))
d0−L(p) ·N(p) p ∈ ∂Ck−Bk

.

(5)

Dk includes Ck and serves the same role for Ck as D0 does for C0.
The conditions in (3) can be seen to be a special case of (5) if we
define o0 = 0. Again we note that, outside of Dk, no modifications
will be made to the lighting (i.e., ok+1(p) = ok(p)). In the Dk−Ck
region, no modification will be visible under the current lighting
conditions, but some modification may be visible when either the
lights or the model are moved. Having a Dk−Ck band allows for
smooth transition from modified ok(p) values to the original values.

To make the above strategy computationally tractable at interactive
rates, we represent the offset function ok(p) with a sum of Radial
Basis Functions (RBF), denoted by ôk(p). Thus in practice we use:

B̂k := {p ∈ S | L(p) ·N(p)+ ôk(p)≥ d0} (6)

in place of Bk, and the boundary constraint (5) is only discretely en-
forced at a finite number of points. The RBF approximation B̂k is
made from the shaded area obtained by the paint operation. Rigor-
ously, the boundary of B̂k may not exactly match that of the original
painted area. To allow fine adjustment, we provide two additional
types of brushes: an intensity brush and a smoothing brush, which
will be described in section 3.4.

Keyframing: Modifications made according to the above algo-
rithm integrate smoothly with standard lighting equations, and for
many animations a single offset function ok may suffice. However,
in order to create more elaborate modifications, it is possible to cre-
ate several keyframes, with a unique offset function ok, f at each
frame f , leading to more complex animation of light and shade.
Lighting of the animation as a whole can then be accomplished by
interpolating the offset functions ok, f . In our prototype we have
used simple linear blending for this purpose, though more compli-
cated blending functions are possible and worth exploring.

3.3 RBF approximation of the offset function

Suppose that S consists of polygon meshes, as shown in Figure 3.
We will assume for simplicity that B̂k = Bk. After obtaining ôk(p)
and Bk in (6), we want to find ôk+1(p), which satisfies the boundary
conditions (5) at a finite number of discrete points. We find a set
of such points {xi} ∈ ∂Ck −Bk by the following procedure. For
each vertex pm inside Ck, we check adjacent edges for intersection
with the boundary ∂Ck −Bk. For each intersecting edge, linear
interpolation between pm and the vertex at the other end, pn, is
used to determine the approximate location of the boundary point
xi. Note that we record stroke data per-vertex only and reconstruct
the stroke linearly, thus no edge can cross the boundary more than
once.

Now let f ≡ ôk+1. We find a continuous f satisfying (5) for {xi} in
the following form [Duchon 1977; Wahba 1990; Turk and O’Brien
1999]:

f (x) =
l

∑
i=1

wiφ(x−xi)+P(x), (7)

where φ is a radial basis function, {wi} are weights, and P is a
polynomial whose degree depends upon the choice of φ . In our
case, l is the number of the boundary constraint points shown in
Figure 3.

We employ φ(x) = ‖x‖ as the basis function after experimenting
with various options. This corresponds to the solution of a general-
ized thin-plate spline problem on R3 [Duchon 1977; Wahba 1990],
and the curvature minimizing properties of this basis function seem
to be well suited to this task. Satisfying a discretized version of
(5) reduces to solving a linear system of equations for the unknown
weights {wi}, and the four coefficients of the linear polynomial P
on R3.

3.4 Additional brushes

The previous sections described how we enable users to add and
edit light areas using a paint-brush metaphor. In a similar way we
can add and edit dark areas. In that case the only difference is the
selection of boundary points used in (5). Instead of using ∂Ck−Bk,
we use the opposite half of ∂Ck, that is, ∂Ck∩Bk. The user simply
switches the editing mode from light to dark. In both cases, the
paint brush is used for roughly specifying the shading boundary.
We call this type of brush a boundary brush.

The boundary brush works well to get a desired shape, but the in-
tensity distribution may not change as smoothly as desired. This
can be due to the radial basis function we select or due to too many
conflicting constraints. For example, we have seen in our exper-
iments that even a smooth radial basis function may result in a
rapidly changing intensity distribution in the area where the dis-
tribution contours are very close to one another. This may cause the
resulting keyframe animation to look unnatural. For this case, we
have created a smoothing brush. By painting on the surface with
the smoothing brush, the offset values are filtered, while preserving
the original value of L(p) ·N(p). In our implementation, the offset
values stored per vertex are updated using a simple weighted aver-
age of values at connected vertices for each stroke operation. In this
way we achieve shading effects that fade in and out more gradually
and have smoother boundaries (see Figure 4).

In some cases it is useful to be able simply to add or remove an
isolated light or dark area. For these situations we provide a simpler
alternative to the boundary brush, which we call the intensity brush.
This brush simply adds to or subtracts from the offset function ok.
The amount added is determined by a magnitude parameter and
the radius of the brush. The magnitude is the amount to add to

(a) (b)

(c) (d)

(e) (f)

Figure 4: Contours of the intensity distribution, L ·N, as influenced
by our brush operations. (a) Initial distribution. (b) A boundary
brush specifies a region which should become dark. (c) The new
distribution with the offset function prescribed by the region. (d)
The distribution modified by a smoothing brush. (e–f) Details from
(c–d).

ok along the centerline of the stroke. We fade the added intensity
smoothly to zero at the edges of the stroke using a “smooth-step”
cubic polynomial falloff.

Figure 4 shows a simple example of how to use these brushes. In
Figure 4(a), an initial intensity distribution on the character is dis-
played using green contour lines. The boundary brush is then ap-
plied in (b). After getting the offset function in (6), we have the new
intensity distribution as shown in (c). Using the smoothing brush,
it is made smoother, as shown in (d).

3.5 Extensions

In order to get more variations of stylized light and shade, we add a
few simple, but useful, extensions of the main algorithms above.

Specular Highlight: We can deal with stylized highlights in the
same framework as the shaded area. In our system we simply need
to replace the Lambertian term (the dot product, L ·N) in (6) with
H ·N from Blinn’s specular highlight model [Blinn 1977], where
H is the normalized half-way vector between the light and the eye.
The user can easily edit the highlights by the brushes in the same
manner as the shaded area.

Continuous tone control: The threshold d0 in (1) is a global con-
stant which controls the shaded area in accordance with (6), but
this is not an essential assumption. Similarly, we can use the paint-
brush metaphors to locally control and edit continuous tone on a
surface by dispensing with the threshold and defining the lightness
at a given point to be simply L(p) ·N(p)+ok(p), or any continuous
function thereof.

c©YOUN IN-WAN, YANG KYUNG-IL/Shin Angyo Project 2004

Figure 5: Editing shade and highlights. The animation (left) cre-
ated using a standard cartoon shader was modified (right) using the
techniques described in section 3. First the excessive highlight on
the forehead was removed using the intensity brush, and then the
boundary brush was used to create a light region around the chin,
which was otherwise invisible.

4 Implementation

Our prototype system is currently implemented as a Maya plug in,
using Maya’s hardware shader functionality that allows shader code
to be written using standard OpenGL and GLSL. With our proto-
type system, the user can freely add localized light and shade to
objects, and see the results, together with the conventional lighting,
in real-time. In our GPU implementation, for each vertex i with
position vi on surface meshes, the offset function value ok(vi) is as-
signed and stored as a vertex color data in Maya, and is transferred
from Maya to GPU as a varying parameter.

As for our paint-brush metaphor, we need to find all of the vertices
inside the brush stroke region and calculate their distances from the
stroke centerline. This information is used to determine the loca-
tions of the points on the boundary in Figure 3, as well as to imple-
ment the smooth falloff of the intensity brush. We accomplish this
using a depth first search from seed points along the brush center-
line. From each seed point, we find all the vertices with distance
less than the brush radius, and set their distance values using the
minimum of their current value and their distance from the current
seed point. This data is needed only for the duration of a single
stroke operation and can be discarded immediately afterward.

5 Results and discussion

We have applied our prototype system to making various stylis-
tic animations. Our system currently runs at interactive rates on
a 2.16GHz Intel P4 Core Duo CPU with an NVIDIA GeForce
QuadroFX 350M GPU. In editing and previewing the animations,
the frame rate ranges from 6 to 20 fps for all the examples in this
paper and in the accompanying videos.

In making facial animation, controlling light and shade on the face
is crucial. Figure 1 and the first half of the accompanying video 1 il-
lustrate how effectively and efficiently our algorithms work for this
important case. As shown in the video, even for making a simple
facial animation, a 3D head model often creates many unnecessary
dark areas, and it is very hard to remove them selectively using
conventional lighting control. On the other hand, our approach can
eliminate them easily and interactively. Moreover it allows the user
to successfully add a variety of effects, each of which dramatically

c©2006 DELTORA QUEST PARTNERS

Figure 6: Editing light and shade on a highly deforming object.
(left) original frame. (right) edited frame. Using the intensity
brush, we edited the light and/or dark areas on the deforming cape
under rapidly changing lighting conditions. See also video 2.

changes the character’s impression.

Figure 5 and the latter half of the video 1 demonstrate a typical case
where an animator uses our system to make the animation less re-
alistic, but more expressive. Comparing with the animation under
conventional lighting (left of Figure 5), we note several effects that
have been added to the animation. Most obvious is the smoothing
and simplification of the moving highlight on the protruding fore-
head. But also for example, the animator has added a light area to
accentuate the jawline; a bright, firm line above the left eye; and
delayed emergence of the face into the light, as shown in the right
of Figure 5. Some of these effects might be achieved by conven-
tional lighting techniques. However, it is almost impossible to add
all of them into the same shot without resorting to frame-by-frame
modifications.

Figure 6 and the first animation example in video 2 show the use of
our techniques on an animated character with a highly deforming
cape using a moving point light and a fixed directional light. This
type of situation can result in light and shade areas that are distract-
ing because they change too rapidly. The animation in the video
demonstrates that our techniques are effective in eliminating such
unnecessary shading and in simplifying light and shade to make it
suitable for cartoon animation.

The second animation in video 2 demonstrates local controllability
of continuous tone with our intensity brush described in section 3.5.
As shown in the movie, even when adjusting the continuous tone on
this object, our approach allows local tone control, adding a back-
light effect around the character’s shoulder (see Figure 7). We were
able to create this animation without modifying the initial light-
ing setup. However, in cases where the viewpoint and/or lights are
moving more dynamically, it may be more difficult to achieve the
same effect using our technique.

In making these animations, we used either of boundary brush or
the intensity brush, depending on the type of modification desired.
The boundary brush is appropriate when the user wants to spec-
ify exactly where the new boundary should lie. If the goal is just
to generally make a light or dark shape bigger or smaller, then the
intensity brush is more effective. In the examples we determined
the size of the paint brushes by experimentation. For example, we
chose the width of the boundary brush so that one stroke of the

c©2006 DELTORA QUEST PARTNERS

Figure 7: Modifying shading with gradations. Here our prototype
system has been used to make a directional lighting setup appear
to be a more dramatic back-lit situation.

#Verts |{wi}| RBF(solve) RBF(dist) Transfer Total

2011 68 0.63 5.0 38.8 44.4
8001 114 3.96 19.5 154 178.
31921 311 27.3 88 630 745.

Table 1: Algorithm performance for strokes of various sizes. (All
times in milliseconds). #Verts is the number of vertices in the stroke
region. |{wi}| is the number of unknown weights in the RBF sys-
tem being solved for, while RBF(solve) is the time taken to solve
the linear system. RBF(dist) is the time taken to compute the RBF
distance function for calculating ok(p). Transfer is the time taken
to transfer vertex data to and from Maya in our plug in.

brush includes at least two adjacent vertices of the surface mesh.
Similarly, the distance between ∂C0 and ∂D0 in Figure 2, it is also
set to include at least two adjacent vertices of the mesh, which can
be accomplished using a slider. The small value of the offset func-
tion specified by the intensity brush in section 3.4 is also set empir-
ically. Given the interactivity of our system, results of a particular
parameter setting can be seen immediately, so we have not found it
burdensome to search for these values via trial and error.

Table 1 shows the performance of our current implementation. The
computation cost, however, depends on the number of vertices con-
tained in Dk. Since we do not paint very large regions Dk in prac-
tice, this cost seems not to be a serious bottleneck in our system.
The most significant part was the basic cost of transferring vertex
data between Maya and our plug in. The performance data in Table
1 also makes it clear that the algorithm itself is sufficiently fast for
interactive editing.

Our prototype system has been made and tested in close collabo-
ration with professional animators in our workplace since the very
early stages of development. Initially, we gave a 20-minute tutorial
to the animators. Since our system is implemented as a Maya plug-
in, they were able to try it out on their own models immediately.
The reaction has been positive - they do seem to find the system
capable of producing the desired results easily and quickly. Most
of the animations in the videos were designed with the animators
so as to clearly display the capabilities of the proposed technique.
Typically animations such as those shown in the videos take a few
hours to complete, which is a drastic improvement over the previ-

ous techniques available to the animators. They also claimed that
the conventional tricks such as texture animation or modifications
to the character’s geometry would make it difficult to maintain con-
sistency between different shots with the same character. Therefore,
with such conventional techniques, these kind of edits would sim-
ply be infeasible on a production schedule. Currently we are adding
this system to an actual production pipeline, so it will soon be ready
for use in forthcoming projects.

Even limiting the discussion to cartoon shading as shown in this
paper, we still feel there are considerable applications of our algo-
rithms not only in feature films, but also for television animation
and even illustrative visualization. In contrast, the direct appli-
cation of our method to interactive video games may be difficult;
however, even in that context, it could be useful for non-interactive
cut-scenes, since playback using our technique is lightweight and
real-time on any modern GPU.

6 Limitations and future work

We have presented a few simple algorithms as steps toward a new
methodology for truly directable stylistic depiction of light and
shade in 3D animation. Our prototype system allows the user to
locally and interactively edit light and shade by painting directly on
3D objects. Moreover the local edits integrate seamlessly with the
conventional global lighting and animate smoothly regardless of the
conventional lighting setup used. The animation examples and the
videos illustrate these advantages over previous methods.

These algorithms, however, are exploratory. There are several
things left to accomplish. In our approach, the RBF-based algo-
rithm is used to obtain the rough boundary of the painted shaded
area. In addition, we make the assumption that the vertices defining
the object will not be added or removed during animation. We do
not handle objects that change topology during an animation. We
may need a more sophisticated algorithm to obtain a more precise
approximation of the painted area. When applying this method to
cartoon animation, highlights with very sharp edges are sometimes
desired. But a smoothing RBF-based method cannot give such a
sharp highlight directly. Providing boolean operations as in [Anjyo
et al. 2006] may be of use here.

Our method allows us to add locally controllable light and shade,
but at the same time conventional lighting control cannot be re-
placed by our approach. For example, as a very simple case, sup-
pose that we want to move a small rounded highlight on a ball from
one location to another. This could be easily accomplished by mov-
ing the light source. However, with the approach presented in this
paper, the highlight would not move, but fade off at the original
point, and fade in at the destination. This clearly demonstrates a
difference between our approach and the conventional one. We be-
lieve that these approaches are complementary. Our approach is
local, which means not only that it enables local editing, but also
that the movement of light and shade is local.

We are currently investigating how to make cast shadows also lo-
cally controllable. We believe that a modified version of the ap-
proach described here has promise for achieving this. In this paper
we have focused on the area of 3D stylized animation. However,
this is an important practical area where there is a clear need for
new techniques to help bridge the gap between artistic direction
and the animator’s heavy load. We hope our approach indicates a
promising direction to serving such a practical need.

Acknowledgments

We would like to thank the SIGGRAPH reviewers for their sub-
stantial feedback to improve the paper. Many thanks also to Shinji
Morohashi, Yosuke Katsura, and Ayumi Kimura for their dedicated
help in making the animation examples. This work was supported
in part by the Japan Science and Technology Agency, CREST
project, and the first author was funded in part by grants from the
Japanese Information-Technology Promotion Agency.

References

AKERS, D., LOSASSO, F., KLINGNER, J., AGRAWALA, M.,
RICK, J., AND HANRAHAN, P. 2003. Conveying shape and fea-
tures with image-based relighting. In IEEE Visualization. (Pro-
ceedings of Visualization2003), 349–354.

ANJYO, K., WEMLER, S., AND BAXTER, W. 2006. Tweakable
light and shade for cartoon animation. In NPAR ’06: Proceed-
ings of the 4th international symposium on Non-photorealistic
animation and rendering, 133–139.

BARLA, P., THOLLOT, J., AND MARKOSIAN, L. 2006. X-Toon:
an extended toon shader. In NPAR ’06: Proceedings of the 4th
international symposium on Non-photorealistic animation and
rendering, 127–132.

BLINN, J. 1977. Models of light reflection for computer synthe-
sized pictures. Computer Graphics 11, 2, 192–198.

DUCHON, J. 1977. Splines minimizing rotation-invariant semi-
norms in sobolev spaces. In Constructive Theory of Functions of
Several Variables number 571 in Lecture Notes in Mathematics,
Springer-Verlag, 85–100.

GOOCH, B., AND GOOCH, A. 2001. Non-Photorealistic Render-
ing. AK Peters Ltd.

KALNINS, R., MARKOSIAN, L., MEIER, B., KOWALSKI, M.,
LEE, J., DAVIVN, P., M.WEBB, HUGHES, J., AND FINKEL-
STEIN, A. 2002. WYSIWYG NPR: drawing strokes directly
on 3D models. ACM Transactions on Graphics. (Proceedings of
SIGGRAPH2002) 21, 3, 755–762.

KAWAI, J. K., PAINTER, J. S., AND COHEN, M. F. 1993. Radiop-
timization: goal based rendering. In Proceedings of SIGGRAPH
1993, Computer Graphics Proceedings, Annual Conference Se-
ries, 147–154.

LAKE, A., MARSHALL, C., HARRIS, M., AND BLACKSTEIN, M.
2000. Stylized rendering techniques for scalable real-time 3D
animation. In NPAR ’00: Proceedings of the 1st international
symposium on Non-photorealistic animation and rendering, 13–
20.

LEE, C. H., HAO, X., AND VARSHNEY, A. 2006. Geometry-
dependent lighting. IEEE Transactions on Visualization and
Computer Graphics 12, 2, 197–207.

OKABE, M., ZENG, G., MATSUSHITA, Y., IGARASHI, T., QUAN,
L., AND SHUM, H.-Y. 2006. Single-view relighting with normal
map painting. In Proceedings of Pacific Graphics 2006, 27–34.

PELLACINI, F., TOLE, P., AND GREENBERG, D. P. 2002. A user
interface for interactive cinematic shadow design. ACM Trans-
actions on Graphics. (Proceedings of SIGGRAPH2002) 21, 3,
563–566.

RUSINKIEWICZ, S., BURNS, M., AND DECARLO, D. 2006. Ex-
aggerated shading for depicting shape and detail. ACM Trans-

actions on Graphics. (Proceedings of SIGGRAPH2006) 25, 3,
1199–1205.

SCHOENEMAN, C., DORSEY, J., SMITS, B., ARVO, J., AND
GREENBURG, D. 1993. Painting with light. In Proceedings
of SIGGRAPH 1993, Computer Graphics Proceedings, Annual
Conference Series, 143–146.

SLOAN, P.-P. J., MARTIN, W., GOOCH, A., AND GOOCH, B.
2001. The lit sphere: a model for capturing npr shading from
art. In Proceedings of Graphics Interface 2001, 143–150.

TURK, G., AND O’BRIEN, J. F. 1999. Shape transformation us-
ing variational implicit functions. In Proceedings of SIGGRAPH
1999, Computer Graphics Proceedings, Annual Conference Se-
ries, 335–342.

WAHBA, G. 1990. Spline Models for Observational Data. SIAM.

