
Parameter-Free Tree Style Pipeline in
Asynchronous Parallel Game-Tree Search

Shu Yokoyama1, Tomoyuki Kaneko1⋆, and Tetsuro Tanaka2

1 Graduate School of Arts and Sciences, The University of Tokyo
2 Information Technology Center, The University of Tokyo

Abstract. Asynchronous parallel game-tree search methods are effec-
tive in improving playing strength by using many computers connected
through relatively slow networks. In game position parallelization, the
master program manages a game-tree and distributes positions in the
tree to workers. Then, each worker asynchronously searches the best
move and evaluation for its assigned position. We present a new method
for constructing an appropriate master tree that provides more important
moves with more workers on their sub-trees to improve playing strength.
Our contribution introduces two advantages: (1) being parameter free in
that users do not need to tune parameters through trial and error, and
(2) efficiency suitable even for short-time matches, such as one second
per move. We implemented our method in chess with a top-level chess
program (Stockfish) and evaluated playing strength through self-plays.
We confirmed that playing strength improves with up to sixty workers.

Keywords: game-tree search, distributed computing, chess, parallel search

1 Introduction

Parallelization of game-tree search has been extensively studied to improve game
programs’ playing strength, especially in chess and its variants. Several efficient
methods have been developed in hardware parallelization [2, 4], in thread-level
parallelization [14], and for tightly connected computers [5, 1, 12, 18].

Recently, as grid computing has become popular, new approaches utilizing
computational resources placed in different locations connected through wide-
area networks have been proposed. Game position parallelization (GPP) [16] is
one such method actually showing steady improvements in playing strength. In
that method, a local computing unit (we call it a worker, even though it could
be a cluster of tightly connected computing nodes) assumes a position assigned
to it. Each worker runs its own game-tree search independently, and then, the
master integrates workers’ results to reach a decision.

This study presents pipeline GPP (P-GPP), which extends both Optimistic
Pondering [8] and GPP, by improving worker management. In P-GPP, positions
are assigned to workers on the basis of realization probabilities [17] automatically

⋆ A part of this work was supported by JSPS KAKENHI Grant Number 25330432.

acquired from game records and a playing program. This automation frees users
from the need to tune heuristic parameters, whereas existing methods need many
configuration parameters. Experiments demonstrate P-GPP’s effectiveness with
up to sixty workers, with results comparable to those shown in the literature [8].
Therefore, P-GPP deserves further study of both its effectiveness and usability
in terms of being parameter free.

The remainder of this paper is organized as follows. The next section re-
views related research. The third section introduces the GPP framework, and
the fourth section presents the P-GPP method. The fifth section presents our
experimental results in chess and improvements in playing strength through self-
play. The last section provides our concluding remarks.

2 Related Work

2.1 Parallelization of Alpha–Beta Pruning

State-of-the-art sequential algorithms on game-tree search have been built upon
alpha–beta pruning [13] with many enhancements. Basically, playing strength
improves when a program searches more deeply, assuming that adequate evalua-
tion functions have been provided. Therefore, various parallel search algorithms
have been developed to improve strength by exploring game-trees in a shorter
time by using more processors. The best solution depends on users’ environ-
ments, because there is a well-known trade-off in the design of parallelization;
an increase in shared information among processors increases pruning effective-
ness, while communication to share information inevitably incurs overheads that
degrade efficiency. State-of-the-art sequential algorithms prune branches aggres-
sively (e.g., late move reductions3) by utilizing information of the tree explored
already, e.g., transposition tables, αβ-windows, killer moves, and history tables.

In parallel search methods in shared memory environments, (e.g., Principal
Variation Splitting [14], Dynamic Tree Splitting4), transposition tables are nat-
urally shared. However, in effective parallelization in distributed environments,
only a part of a transposition table is shared [3, 8] because the cost for full shar-
ing is not beneficial overall. Still, in major approaches including YBWC and
its enhancements [5, 18], APHID [1], and TDSAB [12], αβ-windows or equiv-
alent information are shared in frequent communication. Therefore, they work
more effectively in a network with higher quality, e.g., Infiniband, than with an
ordinary one. Also, many practical systems incorporated hybrid parallelization
including hardware (e.g., Deep Blue [2] and Hydra [4]).

2.2 Integration of Computing Resources through the Internet

Recently, accessing computational resources placed elsewhere has become easy,
if one permits relatively high latency and limited bandwidth to reach them, e.g.,

3 http://www.glaurungchess.com/lmr.html (Last access: February 2015).
4 https://www.cis.uab.edu/hyatt/search.html (Last access: February 2015).

through ordinary Ethernet or wide-area networks. Hence, several new methods
for utilizing such resources have been developed to improve playing strength
further. Owing to network limitations, these methods are designed to work with
little inter-node communication. For example, majority voting requires only com-
munication regarding a position to search and vote for a move [15].

In Optimistic Pondering [7, 9, 8] and GPP [16] which were developed indepen-
dently, workers are assigned distinct positions and search independently without
sharing information. In Optimistic Pondering, the goal is to increase “ponder-
hit” rate as well as to begin pondering as many plies earlier as possible. Pondering
gains additional thinking time to deepen the search when pondering hits, i.e., the
position assigned to a worker is actually realized in the game. In GPP, the goal
is to conduct minimax search cooperatively by integrating search trees explored
by hundreds of workers [16].

A notable advantage of these approaches is that they lend themselves well
to combination with existing parallelization methods. The effectiveness of Op-
timistic Pondering in integrating workers running in YBWC mode was demon-
strated in GridChess [8]. A combination of majority voting, GPP, and shared
memory parallelization on each worker is used for playing shogi in Akara [10].

3 Game Position Parallelization

This section introduces the details of Game Position Parallelization (GPP), on
which our work, P-GPP, is constructed. GPP is based on a master/worker model,
with a typical worker being a universal chess interface (UCI) 5 chess engine.

3.1 Master Tree

GPP conducts minimax search by integrating the results obtained locally by
workers. The master constructs a master tree for task assignments for workers.
The root of a master tree corresponds to the current position, and the number of
nodes of the master tree must be the number of workers available. Suppose that
we have six equivalent workers A, B, C, D, E, and F. The master constructs a
game-tree rooted at the current position, which has five leaves. Fig. 1 shows an
example of a master tree. A node depicted in a rounded rectangle corresponds
to a position similar to those in usual game-trees. A leaf “others” enclosed in a
rectangle is a special position, in which the position is the same as that of the
parent but for which moves to be searched are limited, excluding moves already
covered by its siblings. For example, at position “d4” in the figure, the worker
C does not search moves Nf6 and e6 because workers A and B are working on
them, respectively. Therefore, at each internal node, the children cover all moves
without duplication.

Each worker then independently execute game-tree search for a node and
periodically reports the best move (more precisely, a sequence of best moves, the

5 http://www.shredderchess.com/chess-info/features/uci-universal-chess-
interface.html (Last access: February 2015).

root

Nf6 Score: 28
(PV: Nf3)

info score 28 pv Nf3 d5 ...

d4

others
Score: 41
Best: d5

Worker A

Score: 28
(PV: Nf6, Nf3) e4

Score: 18
(PV: e5, Nf3) others

Score: 11
Best: Nf3

Score: 28
(PV: d4, Nf6, Nf3)

e6 Score: 35
(PV: c4)

Worker B Worker C

Worker D

others
Score: 21
Best: c5

Score: 18
(PV: Nf3)

Worker F Worker E

e5

Fig. 1: A master tree with the initial position at the root. Each leaf has a worker
assigned. For an internal node “d4”, workers A, B, and C work on it coopera-
tively. Workers A and B assume responsibility for two child positions that are
assumed to be the best (“Nf6”) and second best (“e6”) successors, and C as-
sumes responsibility for the remaining moves. The best move and its score with
respect to the max player are kept at each leaf shown in a gray rounded rectan-
gle. The scores and best moves of internal nodes are computed, as in minimax
search.

principal variation, PV) with its evaluation score. The master then integrates the
best moves and scores. Communication required in this process is supported by
standard game protocols, UCI for chess and universal shogi interface (USI)6 for
shogi. For example, the command go searchmoves restricts the moves searched
at an “others” leaf. The use of a text protocol improves software modularity.

GPP aims to achieve steady improvements in playing strength with hundreds
of workers in slow networks [16]. Therefore, neither transposition tables nor αβ
windows are shared. If the network quality is sufficient for them to be shared,
the methods introduced in Section 2.1 are preferable to GPP.

3.2 Tree Growth and Tree Style Pipeline

To improve playing strength in GPP, a master tree must be carefully constructed
such that a more relevant move should have more workers than less important
moves. The problem here is the difficulty in identifying relevant moves in ad-
vance.

Having the master tree of the previous position available while playing a
game provides two advantages: Relevant branches can be estimated from the
information stored in the tree, and workers working on common nodes between
the previous and new trees can continue searching without interruption. In this
study, we call this idea tree style pipeline. The idea has already been adopted in
two different methods: tree of pondering pipeline in Optimistic Pondering [9],
and a recent GPP method [11].

In tree style pipeline, nodes in the previous master trees that remain effec-
tive in the new tree are preserved. The remaining nodes are discarded, and their

6 http://www.glaurungchess.com/shogi/usi.html (Last access: February 2015).

Parent Position

best
move

second
best

others

(a) Simplified expression

Played
move

Workers
 to be reassigned

(b) Tree style pipeline

Fig. 2: Simplified notation (Fig. 2a): Merging a node for other moves into the
parent, makes the right tree equivalent to the left one. Either tree represents a
portion of the master tree shown in Fig. 1, where “Parent Position” corresponds
to the position “d4”. Tree-style pipeline (Fig. 2b): The left tree is the simplified
notation for Fig. 1. When the board situation changes, the master tree grows.
Workers working on positions that are not descendants of the new root (D, E,
and F) are collected and assigned to the newly created leaves.

corresponding workers are assigned to new expanded leaves, as shown in Fig. 2b.
As a simple illustration, note that we draw a tree merging an “others” leaf to
its parent, as explained in Fig. 2a. An advantage in tree style pipeline is that
a worker on a shaded node in Fig. 2b continues searching without interruption
in the transition from the previous tree to the new one. In GPP, a normal leaf
sometimes becomes an “others” leaf, when its child is expanded. Node A in
Fig. 2b is in such a situation. A worker working on such a node is stopped and
immediately restarted with restriction of moves already expanded (i.e., D and E
in this example). This restart’s negative effect must be very limited because the
contents in a transposition table are preserved in each worker. Workers outside
the common tree are collected and used to grow relevant branches of the tree.
In expanding a leaf of the tree, the current best move at the leaf is a promising
candidate to expand. However, it is still not clear which leaves (including “oth-
ers” nodes) are to be expanded and how many new workers each leaf is worth.
This study’s primary contribution is to present a new criterion and procedure
for this problem.

3.3 Comparison with Similar Systems

Table 1 summarizes related work similar to our work. GridChess combines Op-
timistic Pondering and tree style pipeline. The main difference between that
work and ours is minimax integration. Optimistic Pondering focuses on ponder-
ing and does not perform minimax backup in a master tree. Consequently, tasks
assigned to workers are not disjoint in Optimistic Pondering, i.e., it does not
have any “others” leaf in GPP, such as worker C in Fig. 2a. Lacking minimax
backup can create a problem. Suppose that a move at the root seems promis-
ing within a certain search depth, but actually is a blunder that deeper search
can reveal. Through constructing a larger master tree by investing more work-
ers, GPP might detect it earlier than a single worker does. However, Optimistic
Pondering cannot see it until the search of the root worker reaches a sufficient

Table 1: Comparison of distributed search methods and systems similar to GPP.
The first column is the name of the method or system. The second (third)
column indicates whether minimax backup (tree style pipeline) is used. The
fourth column describes when new leaves in the master tree are expanded. “New
root” means when the root of the master tree changes. The fifth column describes
what information source is used to select leaves to be expanded.

Minimax Pipeline Growth Source

GridChess [8] (chess) - Yes Anytime PV
GPP [16] (shogi) Yes (Yes) New root Shallow search

P-GPP (chess) Yes Yes New root Previous PV+Hash

depth, even if many additional workers are involved. Additionally, Optimistic
Pondering changes its master tree more dynamically. While frequent changes
might improve playing strength, many heuristic parameters need to be tuned,
regarding when to start and stop pondering a position.

The idea of GPP was first developed in connection with shogi, integrating
more than 300 ordinary computers and reported in the literature [16]. The origi-
nal version does not have tree style pipeline. Instead, a shallow search is used to
determine the moves to be expanded at each step in the construction of a master
tree. Because this shallow search decreases the available time for the primary
search, our work introduced an alternative method for growing a master tree. Ad-
ditionally, heuristic parameters r0 and r were used in the assignment of workers;
for the n-th promising move at a position having N workers, r0r

n−1N workers
are assigned. The values were r0 = 1/4, r = 3/4 for the root, and r0 = r = 1/2,
otherwise. Later, many heuristic parameters including domain-dependent ones
were introduced, when it was used in human–computer shogi matches [10, 11].
Therefore, our work is the first method incorporating both GPP and tree style
pipeline, simultaneously, eliminating heuristic parameters.

4 P-GPP: Pipeline GPP with Parameter-Free Approach

This section presents our method (P-GPP) extending GPP. When the board is
changed by a move played by a program or its opponent, the master tree for GPP
must be updated so that the node corresponding to the new position becomes
the root in a new tree. P-GPP constructs its new tree using the following steps,
to find the best tree with respect to playing strength:

1. Unreachable nodes from the new root position are removed from the tree, and
the corresponding workers are collected (e.g., node D, E, and F in Fig. 2b).

2. The greedy algorithm presented here determines the number of workers for
each node (except for an “others” leaf), using realization probabilities.

3. For each node l and the number of workers n identified in the previous step,
a concrete sub-tree rooted at l having n nodes is created, considering the
transposition table of the worker at l.

The main contributions of this study are the new methods for steps 2 and 3
presented in the following subsections. For initiating the pipeline process, we
define the initial master tree as a tree having only its root as the starting position.
Alternatively, opening books can be used.

4.1 Utility of Master Tree based on Realization Probability

We introduce the method assuming that the realization probability is available
for all nodes, and we later discuss how we apply it in practice. The utility U(T)
of a master tree T is the summation of the depth weighted by its realization
probability:

U(T) =
∑

v∈V (T)

pvdv, (1)

where V (T) is the set of vertices in the tree T , dv is the depth of node v and
pv is its realization probability. GPP works effectively, if a position included in
the master tree will be reached in an actual game in the future, and it is more
beneficial when the position is further from the root to have more thinking time
before it manifests. Therefore, if we can predict the future, then narrow, deep
trees are preferable for that purpose. However, when we miss a prediction, many
workers must be reallocated, and their results do not contribute to the playing.
This means that the total number of workers collected in the future must be
minimized. Thus, the expectation over the probability in Eq. (1) is adopted.

The realization probability of a node, defined as the product of the transition
probability of each move [17], is the probability that the corresponding sequence
of moves is actually played. By definition, the realization probability of the root
is one. We also assume that the summation of the transition probability of all
legal moves is one in each position. We ignored such edges in counting the depth
in computing the utility that represent “others” moves, because they do not
reduce the search space compared with normal edges. In our simplified notation
of a tree (see Fig. 2a), each internal node corresponds to a leaf led by all other
moves. Hence, the summation of the realization probabilities for all the nodes in
a simplified tree is always one.

4.2 Greedy Growth Algorithm

Assuming that the realization probability of each node is available, we present
a simple greedy algorithm based on iteratively adding a node having the largest
realization probability. Fig. 3 shows a step of the greedy algorithm, where Pi

is the transition probability of a rank i move, and the values are from our ex-
periments listed in Table 2. This algorithm yields a tree of maximum utility in
Eq. (1). The proof is based on the change in the utility when a node is added
(and symmetrically removed). Let T1 be a tree, x a leaf in T1, and T0 the tree
with x removed from T1. The differences between T0 and T1 are node x which
exists only in T1 with probability px and parent x′, which exists both in T0 and
T1 but px′ in T0 is greater than that in T1 by px. Thus, for the probability px, the

p

q r

s

t

P1 P2

P1 P2
P1

P1 P1

P3

P3

Pn: transition probability

realization probability

P1 · P1
def
= P1·1
= 0.2994

P2·1·1
= 0.0530

P2·2·1
= 0.0171

P2·3
= 0.0156

P3 = 0.0880
1st (p)

2nd

3rd

4th

5th

Fig. 3: Example of greedy steps: for a tree drawn with a solid line with candidates,
each of which is a dotted circle with its probability, node p having the largest
probability is added. After the fifth step, the tree in the right figure is obtained.

depth of x is added to U(T1) while the depth of x′ is added to U(T0), where the
difference in the depth of x and x′ is 1. Therefore, we have U(T1)−U(T0) = px.

Here is a sketch of the proof by contradiction. Let T be the tree yielded by our
greedy algorithm. We assume that there exists a tree T ′ having the maximum
utility that is strictly better than that of T , i.e., U(T ′) > U(T), T ̸= T ′ and
|V (T)| = |V (T ′)|. Then, we select two nodes, v∗ from T \ T ′ and v from T ′ \ T .
Let v∗ ∈ T \ T ′ be the node added at the earliest step. There exists a node v in
T ′ \ T , such that pv∗ > pv.

7 Thus, when we generate T ′′ by replacing node v in
T ′ with node v∗, we have U(T ′′) > U(T ′). This contradicts the assumption that
T ′ has the maximum utility. ⊓⊔

4.3 Realization Probability in Practice

For the realization probability in P-GPP, we used the empirical transition prob-
ability that expert players play a move of n-th rank when moves are ranked by
a worker program. While the class of a move (e.g., check) is used in the original
literature [17], we believe the ranks determined by the scores in the previous
master tree are more reliable sources here. The probabilities regarding the rank,
the only parameters that P-GPP requires, are obtained from a worker program
and game records, as shown in Table 2 in the experiments discussed later.

Having the score in each node, including “others” in the tree, the rank and
consequently the realization probability are identified for each node by virtu-
ally sorting nodes by their scores. However, the ranks and probabilities are not
available for newly added nodes at this step. Therefore, we virtually add an n-th
node as needed without knowing the actual n-th best move leading to the node.
Then, we count the number of virtual nodes added in this process for each node
and recovers the original tree discarding these virtual nodes.

7 By the definition of the greedy algorithm, we have pv∗ ≥ pv for any v ∈ T ′ \ T . In
the special case that pv∗ = pv for all v ∈ T ′ \ T , utility U(T ′) equals U(T) by the
definition of v∗, and this contradicts the assumption that U(T ′) > U(T).

Table 2: Frequency of move w.r.t. the rank, evaluated with Stockfish
Rank 1 2 3 4 5 6 7 8 9 10 11+
Frequency 0.5472 0.1769 0.0880 0.0522 0.0293 0.0247 0.0211 0.0128 0.0082 0.0110 0.0284

Now the problem is to construct an effective sub tree with n nodes rooted at
the leaf, given a node l and the number n to be added. If n = 1, it is sufficient to
expand the best move. Otherwise, this can be achieved by extracting the n most
valuable positions from the transposition table of the corresponding worker (if
l is a leaf) or the worker of its “others” leaf (if l is an internal node). We used
the depth searched under a position for the criterion in this selection. These
positions are sent from each leaf to the master every time the new master tree is
constructed. Because the estimated data size is about one kilobyte for 32 entries,
it can be expected to consume negligible time and network resources.

5 Experiments

To evaluate P-GPP, we implemented our method in chess. We first show the
relative frequency (or empirical probability) of moves with respect to their rank,
obtained from game records. Then, by using the frequency as the transition
probability, self-play experiments are conducted.

5.1 Configurations

We adopted Stockfish DD8 as a worker program, because it is an open source
program and is expected to be one of the strongest chess programs. We added
the function of reporting information described in Section 4.3, extending the UCI
protocol. Each worker and the master are connected via standard TCP sockets.
The master is implemented in C++ with the boost/asio library. For a worker, a
utility program netcat is adopted as a proxy connecting stdin/stdout and a TCP
socket. To simulate a distributed environment, we used at most 64 cores in two
computers each of which is equipped with two Intel Xeon E5-4650 processors.
Stockfish ran as a sequential program using a single thread. Each worker was
allowed to use 32MiB (Stockfish uses 16 bytes per position) for its transposition
table.

5.2 Empirical Probability with respect to the Rank of a Move

Table 2 shows the frequency of moves played for each rank. Twelve game records
played between DeepBlue and Kasparov consisting of 1 091 plies were used. For
each position, all moves are scored using fifteen-depth search and sorted to get
the rank. We classified the ranks in eleven classes, from first to tenth, and the
eleventh or greater. The result shows 54.7% for the first-ranked move and 81%
in the third rank.
8 https://s3.amazonaws.com/stockfish/stockfish-dd-src.zip

5.3 Improvements in Strength

We conducted self-play experiments and showed the winning probability of sev-
eral variations of the presented system against a sequential program. The sequen-
tial program is nearly the same as the original Stockfish, except that it ponders
the current position instead of a future predicted position. The reason for the
adjustment is to average the effect of ponder-hits and misses. Additionally, the
sequential program is nearly the same as the presented method with a single
worker. A program (XBoard) managed matches in judging and recording the
results and a program (Polyglot)9 is used to connect XBoard and Stockfish. The
book used was performance.bin.10 The opening was randomly chosen from the
book by Polyglot. The win rate here is defined as the probability of wins plus
half of the probability of draws, following the literature [6].

To consider the communication overhead in distributed environments, we im-
posed a thinking-time penalty on the proposed program. While the sequential
program was given 1 000ms to think per ply, the presented system P-GPP was
given only 950ms. We believe that 50ms is more than sufficient for the commu-
nication in the presented method. In addition to P-GPP, we measured the win
rate of “Linear Speedup” and “Random Growth.” The former is the sequential
program given n-times thinking time instead of using n workers.11 This program
gives the upper bound of the win rates gained by the ideal parallelization with-
out overhead. The latter is a variation of P-GPP, ignoring transposition tables;
it adds the position after the best move and randomly picked up n−1 positions,
when adding n nodes to a leaf at the step in Section 4.3. For each configuration,
1 000 games were played alternating black and white.

Fig. 4a shows the win rate of the parallel programs against the sequential
one. The horizontal axis indicates the concurrency in the log-scale, and the error
bars indicate as 95% confidence interval. In P-GPP, the win rate increases with
the number of workers. With a single worker, the win rate was 48.1%, not even
reaching 50%. This was apparently caused by the thinking-time penalty. With 32
and 60 workers, our method achieved 62.5% and 64.6% win rates, respectively.
The improvements did not reach those in the linear speedup, but they are sim-
ilar to those reported in Optimistic Pondering built upon the cluster Toga [8].
Therefore, we conclude that our method scaled reasonably at least up to 60
workers. On the other hand, “Random Growth” did not improve the playing
strength. In the case of a single worker, the win rate was even, as the two play-
ers are the same. However, it became weaker with four or more workers. These
results show the importance of master trees. When the master tree is random,
only the worker working on the root contributes to playing strength. Moreover,
the transposition tables of the workers tend to be filled with irrelevant positions,
possibly degrading strength. To examine this result further, we measured the
win rate of such a sequential program, which clears its transposition table every

9 Version 1.4w29 http://www.geenvis.net/polyglot1.4w29.zip
10 http://wbec-ridderkerk.nl/html/downloada/lacrosse/performance.rar
11 The opponent was configured not to use this additional time in pondering.

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

1 10 100

Discarding Transpos. Table (Seq.)

W
in

R
a
te

Workers

P-GPP
Random Growth
Linear Speedup

(a) Win rates

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

1 10 100

D
ep

th

Workers

P-GPP
Random Growth

Simulation Result

(b) Utility of trees

Fig. 4: Left (4a): win rates of parallel systems in self-play. Right (4b): observed
utility. The average number of played plies included in the master trees, in self-
play for the player’s turn, with a “Simulation Result” that is U(T) of the trees
built virtually using only the greedy algorithm with the realization probability.

time it plays a move. The win rate was only 39.2%, explaining the contribution
of the transposition table to strength.

Fig. 4b shows the utilities of the master trees constructed in self-play ex-
periments, with simulated utilities considering only the realization probabilities
listed in Table 2. The observed utilities are the average maximum depth of a
position reached in actual games. In P-GPP, the utilities increase along with
the concurrency and go beyond the simulated results, most likely because there
are sometimes fewer legal moves in some positions than the branching factor of
the simulated tree, and it is easier for Stockfish to predict moves played by the
same program than to predict moves played by Kasparov’s or by Deep Blue. The
utilities did not reach 1.0 in “Random Growth.”

6 Conclusion

We demonstrated that P-GPP, a new asynchronous parallel game-tree search
method, works effectively in chess. P-GPP has two advantages: it is parameter-
free in that users do not need to tune parameters through trial and error, and
it is suitably efficient even for short-time matches. We confirmed that playing
strength improves with up to sixty workers. The win rates are comparable to
those of an existing method [8]. Therefore, we believe that P-GPP is a simple
and promising alternative to existing methods. Interesting future work would
involve scalability up to hundreds of workers.

References

1. Brockington, M.: Asynchronous Parallel Game-Tree Search. Ph.D. thesis, Univer-
sity of Alberta (1998)

2. Campbell, M., Hoane, Jr., A.J., Hsu, F.h.: Deep Blue. Artificial Intelligence 134(1–
2), 57–83 (Jan 2002)

3. Donninger, C., Kure, A., Lorenz, U.: Parallel brutus: the first distributed, fpga
accelerated chess program. In: Parallel and Distributed Processing Symposium,
2004. Proceedings. 18th International. pp. 44– (April 2004)

4. Donninger, C., Lorenz, U.: The chess monster hydra. In: Becker, J., Platzner, M.,
Vernalde, S. (eds.) Field Programmable Logic and Application, Lecture Notes in
Computer Science, vol. 3203, pp. 927–932. Springer Berlin Heidelberg (2004)

5. Feldmann, R.: Game Tree Search on Massively Parallel Systems. Ph.D. thesis,
University of Paderborn (1993)

6. Heinz, E.A.: New self-play results in computer chess. In: Marsland, T.A., Frank,
I. (eds.) Computer and Games. pp. 262–276. No. 2063 in LNCS, Springer-Verlag,
Hamamatsu, Japan (Oct 2001)

7. Himstedt, K.: An optimistic pondering approach for asynchronous distributed
game-tree search. ICGA Journal 28(2), 77–90 (2005)

8. Himstedt, K.: Gridchess: Combining optimistic pondering with the young brothers
wait concept. ICGA Journal 35(2), 67–79 (2012)

9. Himstedt, K., Lorenz, U., Möller, D.P.F.: A twofold distributed game-tree search
approach using interconnected clusters. In: Luque, E., Margalef, T., Benitez, D.
(eds.) Euro-Par 2008 - Parallel Processing, 14th International Euro-Par Conference,
Las Palmas de Gran Canaria, Spain, August 26-29, 2008, Proceedings. Lecture
Notes in Computer Science, vol. 5168, pp. 587–598. Springer (2008)

10. Hoki, K., Kaneko, T., Yokoyama, D., Obata, T., Yamashita, H., Tsuruoka, Y.,
Ito, T.: Distributed-shogi-system Akara 2010 and its demonstration. International
Journal of Computer & Information Science 14(2), 55–63 (2013)

11. Kaneko, T., Tanaka, T.: Distributed game tree search and improvements – match
between hiroyuki miura and gpsshogi –. IPSJ Magazine 54(9), 914–922 (aug 2013),
(In Japanese)

12. Kishimoto, A.: Transposition table driven scheduling for two-player games. M.Sc.
Thesis, University of Alberta (January 2002)

13. Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning 6(4), 293–326 (1975)
14. Marsland, T.A., Popowich, F.: Parallel game-tree search. IEEE Transactions on

Pattern Analysis and Machine Intelligence 7, 442–452 (1985)
15. Obata, T., Sugiyama, T., Hoki, K., Ito, T.: Consultation algorithm in computer

shogi - a move decision by majority. In: Computers and Games – 7th International
Conference (CG2010). pp. 156–165. No. 6515 in LNCS, Springer-Verlag (2011)

16. Tanaka, T., Kaneko, T.: Massively parallel execution of shogi programs. In: The
Special Interest Group Technical Reports of IPSJ. 2, vol. GI-24, pp. 1–8 (2010),
(In Japanese)

17. Tsuruoka, Y., Yokoyama, D., Chikayama, T.: Game-tree search algorithm based
on realization probability. ICGA Journal 25(3), 145–152 (2002)

18. Ura, A., Yokoyama, D., Chikayama, T.: Two-level task scheduling for parallel game
tree search based on necessity. Journal of information processing 21(1), 17–25 (jan
2013)

